9,219 research outputs found

    A Shared memory multiprocessor system architecture utilizing a uniform

    Get PDF
    Due to VLSI lithography problems and the limitation of additional architectural enhancements uniprocessor systems are nearing the end of their life cycle. Therefore, it is believed that Symmetric Multiprocessing (SMP) systems will be the next mainstream computer. These systems allow multiple processors, accessing the same memory image, to cooperate on a number of computational tasks as a single entity. While multiprocessor systems can offer a substantial performance increase compared to uniprocessor systems, major design considerations must be addressed to achieve desired system efficiency levels. Managing cache coherence is a significant problem in multiprocessor systems. Current implementations cope with this problem by utilizing a cache coherence protocol. This protocol puts a large amount of overhead on the system bus to ensure proper program execution, effectively decreasing overall system performance. This thesis approaches the cache coherence problem from a new angle. Instead of utilizing a cache coherence protocol, a new memory system is proposed which eliminates the need for a cache coherence protocol, by utilizing a shared level 2 data-only cache. This new architecture allows for better utilization of the system and improved performance and scalability. A data rate analysis is conducted to demonstrate the potential performance increase from the proposed architecture over conventional approaches. The data rate model clearly shows an increase in system performance and utilization when using the architecture proposed in this thesis

    A Survey of Techniques For Improving Energy Efficiency in Embedded Computing Systems

    Full text link
    Recent technological advances have greatly improved the performance and features of embedded systems. With the number of just mobile devices now reaching nearly equal to the population of earth, embedded systems have truly become ubiquitous. These trends, however, have also made the task of managing their power consumption extremely challenging. In recent years, several techniques have been proposed to address this issue. In this paper, we survey the techniques for managing power consumption of embedded systems. We discuss the need of power management and provide a classification of the techniques on several important parameters to highlight their similarities and differences. This paper is intended to help the researchers and application-developers in gaining insights into the working of power management techniques and designing even more efficient high-performance embedded systems of tomorrow

    Kilo-instruction processors: overcoming the memory wall

    Get PDF
    Historically, advances in integrated circuit technology have driven improvements in processor microarchitecture and led to todays microprocessors with sophisticated pipelines operating at very high clock frequencies. However, performance improvements achievable by high-frequency microprocessors have become seriously limited by main-memory access latencies because main-memory speeds have improved at a much slower pace than microprocessor speeds. Its crucial to deal with this performance disparity, commonly known as the memory wall, to enable future high-frequency microprocessors to achieve their performance potential. To overcome the memory wall, we propose kilo-instruction processors-superscalar processors that can maintain a thousand or more simultaneous in-flight instructions. Doing so means designing key hardware structures so that the processor can satisfy the high resource requirements without significantly decreasing processor efficiency or increasing energy consumption.Peer ReviewedPostprint (published version

    CellSim: a validated modular heterogeneous multiprocessor simulator

    Get PDF
    As the number of transistors on a chip continues increasing the power consumption has become the most important constraint in processors design. Therefore, to increase performance, computer architects have decided to use multiprocessors. Moreover, recent studies have shown that heterogeneous chip multiprocessors have greater potential than homogeneous ones. We have built a modular simulator for heterogeneous multiprocessors that can be configure to model IBM's Cell Processor. The simulator has been validated against the real machine to be used as a research tool.Peer ReviewedPostprint (published version

    A fault-tolerant multiprocessor architecture for aircraft, volume 1

    Get PDF
    A fault-tolerant multiprocessor architecture is reported. This architecture, together with a comprehensive information system architecture, has important potential for future aircraft applications. A preliminary definition and assessment of a suitable multiprocessor architecture for such applications is developed
    • …
    corecore