87 research outputs found

    A Design Framework for Efficient Distributed Analytics on Structured Big Data

    Get PDF
    Distributed analytics architectures are often comprised of two elements: a compute engine and a storage system. Conventional distributed storage systems usually store data in the form of files or key-value pairs. This abstraction simplifies how the data is accessed and reasoned about by an application developer. However, the separation of compute and storage systems makes it difficult to optimize costly disk and network operations. By design the storage system is isolated from the workload and its performance requirements such as block co-location and replication. Furthermore, optimizing fine-grained data access requests becomes difficult as the storage layer is hidden away behind such abstractions. Using a clean slate approach, this thesis proposes a modular distributed analytics system design which is centered around a unified interface for distributed data objects named the DDO. The interface couples key mechanisms that utilize storage, memory, and compute resources. This coupling makes it ideal to optimize data access requests across all memory hierarchy levels, with respect to the workload and its performance requirements. In addition to the DDO, a complementary DDO controller implementation controls the logical view of DDOs, their replication, and distribution across the cluster. A proof-of-concept implementation shows improvement in mean query time by 3-6x on the TPC-H and TPC-DS benchmarks, and more than an order of magnitude improvement in many cases

    Energy-efficient Transitional Near-* Computing

    Get PDF
    Studies have shown that communication networks, devices accessing the Internet, and data centers account for 4.6% of the worldwide electricity consumption. Although data centers, core network equipment, and mobile devices are getting more energy-efficient, the amount of data that is being processed, transferred, and stored is vastly increasing. Recent computer paradigms, such as fog and edge computing, try to improve this situation by processing data near the user, the network, the devices, and the data itself. In this thesis, these trends are summarized under the new term near-* or near-everything computing. Furthermore, a novel paradigm designed to increase the energy efficiency of near-* computing is proposed: transitional computing. It transfers multi-mechanism transitions, a recently developed paradigm for a highly adaptable future Internet, from the field of communication systems to computing systems. Moreover, three types of novel transitions are introduced to achieve gains in energy efficiency in near-* environments, spanning from private Infrastructure-as-a-Service (IaaS) clouds, Software-defined Wireless Networks (SDWNs) at the edge of the network, Disruption-Tolerant Information-Centric Networks (DTN-ICNs) involving mobile devices, sensors, edge devices as well as programmable components on a mobile System-on-a-Chip (SoC). Finally, the novel idea of transitional near-* computing for emergency response applications is presented to assist rescuers and affected persons during an emergency event or a disaster, although connections to cloud services and social networks might be disturbed by network outages, and network bandwidth and battery power of mobile devices might be limited

    Proceedings of the First PhD Symposium on Sustainable Ultrascale Computing Systems (NESUS PhD 2016)

    Get PDF
    Proceedings of the First PhD Symposium on Sustainable Ultrascale Computing Systems (NESUS PhD 2016) Timisoara, Romania. February 8-11, 2016.The PhD Symposium was a very good opportunity for the young researchers to share information and knowledge, to present their current research, and to discuss topics with other students in order to look for synergies and common research topics. The idea was very successful and the assessment made by the PhD Student was very good. It also helped to achieve one of the major goals of the NESUS Action: to establish an open European research network targeting sustainable solutions for ultrascale computing aiming at cross fertilization among HPC, large scale distributed systems, and big data management, training, contributing to glue disparate researchers working across different areas and provide a meeting ground for researchers in these separate areas to exchange ideas, to identify synergies, and to pursue common activities in research topics such as sustainable software solutions (applications and system software stack), data management, energy efficiency, and resilience.European Cooperation in Science and Technology. COS

    OctopusDB : flexible and scalable storage management for arbitrary database engines

    Get PDF
    We live in a dynamic age with the economy, the technology, and the people around us changing faster than ever before. Consequently, the data management needs in our modern world are much different than those envisioned by the early database inventors in the 70s. Today, enterprises face the challenge of managing ever-growing dataset sizes with dynamically changing query workloads. As a result, modern data managing systems, including relational as well as big data management systems, can no longer afford to be carved-in-stone solutions. Instead, data managing systems must inherently provide flexible data management techniques in order to cope with the constantly changing business needs. The current practice to deal with changing query workloads is to have a different specialized product for each workload type, e.g. row stores for OLTP workload, column stores for OLAP workload, streaming systems for streaming workload, and scan-oriented systems for shared query processing. However, this means that the enterprises have to now glue different data managing products together and copy data from one product to another, in order to support several query workloads. This has the additional penalty of managing a zoo of data managing systems in the first place, which is tedious, expensive, as well as counter-productive for modern enterprises. This thesis presents an alternative approach to supporting several query workloads in a data managing system. We observe that each specialized database product has a different data store, indicating that different query workloads work well with different data layouts. Therefore, a key requirement for supporting several query workloads is to support several data layouts. Therefore, in this thesis, we study ways to inject different data layouts into existing (and familiar) data managing systems. The goal is to develop a flexible storage layer which can support several query workloads in a single data managing system. We present a set of non-invasive techniques, coined Trojan Techniques, to inject different data layouts into a data managing system. The core idea of Trojan Techniques is to drop the assumption of having one fixed data store per data managing system. Trojan Techniques are non-invasive in the sense that they do not make heavy untenable changes to the system. Rather, they affect the data managing system from inside, almost at the core. As a result, Trojan Techniques bring significant improvements in query performance. It is interesting to note that in our approach we follow a design pattern that has been used in other non-invasive research works as well, such as PAX, fractal prefetching B+-trees, and RowCol. We propose four Trojan Techniques. First, Trojan Indexes add an additional index access path in Hadoop MapReduce. Second, Trojan Joins allow for co-partitioned joins in Hadoop MapReduce. Third, Trojan Layouts allow for row, column, or column-grouped layouts in Hadoop MapReduce. Together, these three techniques provide a highly flexible data storage layer for Hadoop MapReduce. Our final proposal, Trojan Columns, introduces columnar functionality in row-oriented relational databases, including closed source commercial databases, thus bridging the gap between row and column oriented databases. Our experimental results show that Trojan Techniques can improve the performance of Hadoop MapReduce by a factor of up to 18, and that of a top-notch commercial database product by a factor of up to 17.Wir leben in einer dynamischen Zeit, in der sich Wirtschaft, Technologie und Gesellschaft schneller verändern als jemals zuvor. Folglich unterscheiden sich die Anforderungen an Datenverarbeitung heute sehr von dem, was sich die Pioniere dieses Forschungsgebiets in den 70er Jahren ursprünglich ausgemalt hatten. Heutzutage sehen sich Firmen mit der Herausforderung konfrontiert, stark fluktuierende Anfragelasten über einer stetig wachsender Datenmengen zu bewältigen. Daher können es sich moderne Datenbanksysteme, sowohl relationale als auch Big Data Systeme, nicht mehr leisten, wie starre, in Stein gemeißelte Lösungen zu funktionieren. Stattdessen sollten moderne Datenbanksysteme von Grunde auf für flexible Datenverwaltung konzipiert werden, um mit sich ständig ändernden Anforderungen Schritt halten zu können. Die gegenwärtige Praxis im Umgang mit häufig wechselnden Anfragemustern besteht allerdings noch darin, jeweils unterschiedliche, spezialisierte Lösungen für die verschiedenen Anfragetypen zu nutzen - zum Beispiel zeilenorientierte Systeme für OLTP Anfragen, spaltenorientierte Systeme für OLAP Anfragen, Data Stream Management Systeme für kontinuierliche Datenströme und Scan-basierte Systeme für die Bearbeitung von vielen gleichzeitigen Anfragen. Leider setzt dieses Vorgehen aber voraus, dass die Unternehmen es schaffen die verschiedensten Systeme irgendwie miteinander zu verknüpfen und einen Datenaustausch zwischen ihnen zu gewährleisten. Ein zusätzlicher Nachteil ist, dass hierbei oft ein ganzes Sortiment von Datenbankprodukten eingerichtet und gepflegt werden muss, was sowohl zeit- als auch kostenintensiv und damit letztlich aufwendig ist. Diese Dissertation präsentiert eine alternative Lösung, um wechselnde Anfragemuster effizient mit einem einzigen Datenverwaltungssystem zu unterstützen. Aus der Beobachtung, dass jedes spezielle Datenbankprodukt unterschiedliche Ansätze zur Datenspeicherung nutzt, folgern wir, dass verschiedene Anfragen jeweils auf bestimmten Datenlayouts effizienter beantwortet werden können als auf anderen. Deshalb ist eine zentrale Anforderung zur effizienten Verarbeitung unterschiedlicher Anfragetypen mit nur einem System, dass dieses System verschiedene Datenlayouts unterstützen muss. Dazu untersuchen wir in dieser Arbeit Möglichkeiten, um verschiedene Datenlayouts nachträglich in bestehende (und bekannte) Datenbanksysteme einzuschleusen. Das Ziel hierbei ist die Entwicklung einer flexiblen Speicherschicht, die verschiedenste Anfragen in einem einzigen Datenbanksystem unterstützen kann. Wir haben hierzu eine Reihe von nichtinvasiven Techniken, auch Trojanische Techniken genannt, entwickelt, mit denen sich verschiedene Datenlayouts nachträglich in existierende Systeme einschleusen lassen. Die Grundidee hinter diesen Trojanischen Techniken ist es, die Annahme, dass jedes Datenbanksystem nur eine festgelegte Art der Datenspeicherung haben kann, fallen zu lassen. Die Trojanischen Techniken erfordern nur minimale Änderungen am ursprünglichen Datenbanksystem, sondern beeinflussen dessen Verhalten von innen heraus. Der Einsatz Trojanischen Techniken kann die Anfragegeschwindigkeit erheblich steigern. Wir folgen mit diesem Ansatz einem Entwurfsmuster, das auch in anderen nichtinvasiven Forschungsprojekten wie PAX, fpB+-Bäume und RowCol verwendet wurde. Wir stellen in dieser Arbeit vier verschiedene Trojanische Techniken vor. Als erstes zeigen wir, wie Trojanische Indexe die Integration eines Index in Hadoop MapReduce ermöglichen. Ergänzt wird dies durch Trojanische Joins, welche kopartitionierte Joins in Hadoop MapReduce ermöglichen. Danach zeigen wir, wie Trojanische Layouts Hadoop MapReduce um zeilen-, spalten- und gruppierte spaltenorientierte Datenlayouts erweitern. Zusammen bilden diese Techniken eine flexible Speicherschicht für das Hadoop MapReduce Framework. Unsere vierte Technik, Trojanische Spalten, erlaubt es uns, spaltenorientierte Datenverarbeitung nachträglich in zeilenbasierten Datenbanksysteme einzuführen und lässt sich sogar auf kommerzielle closed-source Produkten anwenden. Wir schließen damit die Lücke zwischen zeilen- und spaltenorientierten Datenbanksystemen. In unseren Experimenten zeigen wir, dass die Trojanischen Techniken die Leistung des Hadoop MapReduce Frameworks um das bis zu 18fache und die Geschwindigkeit einer aktuellen kommerziellen Datenbank um das 17fache erhöhen können

    Hyperscale Data Processing With Network-Centric Designs

    Get PDF
    Today’s largest data processing workloads are hosted in cloud data centers. Due to unprecedented data growth and the end of Moore’s Law, these workloads have ballooned to the hyperscale level, encompassing billions to trillions of data items and hundreds to thousands of machines per query. Enabling and expanding with these workloads are highly scalable data center networks that connect up to hundreds of thousands of networked servers. These massive scales fundamentally challenge the designs of both data processing systems and data center networks, and the classic layered designs are no longer sustainable. Rather than optimize these massive layers in silos, we build systems across them with principled network-centric designs. In current networks, we redesign data processing systems with network-awareness to minimize the cost of moving data in the network. In future networks, we propose new interfaces and services that the cloud infrastructure offers to applications and codesign data processing systems to achieve optimal query processing performance. To transform the network to future designs, we facilitate network innovation at scale. This dissertation presents a line of systems work that covers all three directions. It first discusses GraphRex, a network-aware system that combines classic database and systems techniques to push the performance of massive graph queries in current data centers. It then introduces data processing in disaggregated data centers, a promising new cloud proposal. It details TELEPORT, a compute pushdown feature that eliminates data processing performance bottlenecks in disaggregated data centers, and Redy, which provides high-performance caches using remote disaggregated memory. Finally, it presents MimicNet, a fine-grained simulation framework that evaluates network proposals at datacenter scale with machine learning approximation. These systems demonstrate that our ideas in network-centric designs achieve orders of magnitude higher efficiency compared to the state of the art at hyperscale
    • …
    corecore