330 research outputs found

    Instruction-set architecture synthesis for VLIW processors

    Get PDF

    An automated OpenCL FPGA compilation framework targeting a configurable, VLIW chip multiprocessor

    Get PDF
    Modern system-on-chips augment their baseline CPU with coprocessors and accelerators to increase overall computational capacity and power efficiency, and thus have evolved into heterogeneous systems. Several languages have been developed to enable this paradigm shift, including CUDA and OpenCL. This thesis discusses a unified compilation environment to enable heterogeneous system design through the use of OpenCL and a customised VLIW chip multiprocessor (CMP) architecture, known as the LE1. An LLVM compilation framework was researched and a prototype developed to enable the execution of OpenCL applications on the LE1 CPU. The framework fully automates the compilation flow and supports work-item coalescing to better utilise the CPU cores and alleviate the effects of thread divergence. This thesis discusses in detail both the software stack and target hardware architecture and evaluates the scalability of the proposed framework on a highly precise cycle-accurate simulator. This is achieved through the execution of 12 benchmarks across 240 different machine configurations, as well as further results utilising an incomplete development branch of the compiler. It is shown that the problems generally scale well with the LE1 architecture, up to eight cores, when the memory system becomes a serious bottleneck. Results demonstrate superlinear performance on certain benchmarks (x9 for the bitonic sort benchmark with 8 dual-issue cores) with further improvements from compiler optimisations (x14 for bitonic with the same configuration

    Code Generation for an Application-Specific VLIW Processor With Clustered, Addressable Register Files

    Get PDF
    International audienceModern compilers integrate recent advances in compiler construction, intermediate representations, algorithms and programming language front-ends. Yet code generation for appli\-cation-specific architectures benefits only marginally from this trend, as most of the effort is oriented towards popular general-purpose architectures. Historically, non-orthogonal architectures have relied on custom compiler technologies, some retargettable, but largely decoupled from the evolution of mainstream tool flows. Very Long Instruction Word (VLIW) architectures have introduced a variety of interesting problems such as clusterization, packetization or bundling, instruction scheduling for exposed pipelines, long delay slots, software pipelining, etc. These have been addressed in the literature, with a focus on the exploitation of Instruction Level Parallelism (ILP). While these are well known solutions already embedded into existing compilers, they rely on common hardware functionalities that are expected to be present in a fairly large subset of VLIW architectures. This paper presents our work on back-end compiler for Mephisto, a high performance low-power application-specific processor, based on LLVM. Mephisto is specialized enough to challenge established code generation solutions for VLIW and DSP processors, calling for an innovative compilation flow. Conversely, even though Mephisto might be seen a somewhat exotic processor, its hardware characteristics such as addressable register files benefit from existing analyses and transformations in LLVM. We describe our model of the Mephisto architecture, the difficulties we encountered, and the associated compilation methods, some of them new and specific to Mephisto

    Hyperspectral Unmixing on Multicore DSPs: Trading Off Performance for Energy

    Get PDF
    Wider coverage of observation missions will increase onboard power restrictions while, at the same time, pose higher demands from the perspective of processing time, thus asking for the exploration of novel high-performance and low-power processing architectures. In this paper, we analyze the acceleration of spectral unmixing, a key technique to process hyperspectral images, on multicore architectures. To meet onboard processing restrictions, we employ a low-power Digital Signal Processor (DSP), comparing processing time and energy consumption with those of a representative set of commodity architectures. We demonstrate that DSPs offer a fair balance between ease of programming, performance, and energy consumption, resulting in a highly appealing platform to meet the restrictions of current missions if onboard processing is required

    Digital signal processor fundamentals and system design

    Get PDF
    Digital Signal Processors (DSPs) have been used in accelerator systems for more than fifteen years and have largely contributed to the evolution towards digital technology of many accelerator systems, such as machine protection, diagnostics and control of beams, power supply and motors. This paper aims at familiarising the reader with DSP fundamentals, namely DSP characteristics and processing development. Several DSP examples are given, in particular on Texas Instruments DSPs, as they are used in the DSP laboratory companion of the lectures this paper is based upon. The typical system design flow is described; common difficulties, problems and choices faced by DSP developers are outlined; and hints are given on the best solution

    Baseband analog front-end and digital back-end for reconfigurable multi-standard terminals

    Get PDF
    Multimedia applications are driving wireless network operators to add high-speed data services such as Edge (E-GPRS), WCDMA (UMTS) and WLAN (IEEE 802.11a,b,g) to the existing GSM network. This creates the need for multi-mode cellular handsets that support a wide range of communication standards, each with a different RF frequency, signal bandwidth, modulation scheme etc. This in turn generates several design challenges for the analog and digital building blocks of the physical layer. In addition to the above-mentioned protocols, mobile devices often include Bluetooth, GPS, FM-radio and TV services that can work concurrently with data and voice communication. Multi-mode, multi-band, and multi-standard mobile terminals must satisfy all these different requirements. Sharing and/or switching transceiver building blocks in these handsets is mandatory in order to extend battery life and/or reduce cost. Only adaptive circuits that are able to reconfigure themselves within the handover time can meet the design requirements of a single receiver or transmitter covering all the different standards while ensuring seamless inter-interoperability. This paper presents analog and digital base-band circuits that are able to support GSM (with Edge), WCDMA (UMTS), WLAN and Bluetooth using reconfigurable building blocks. The blocks can trade off power consumption for performance on the fly, depending on the standard to be supported and the required QoS (Quality of Service) leve

    An FPGA implementation of an investigative many-core processor, Fynbos : in support of a Fortran autoparallelising software pipeline

    Get PDF
    Includes bibliographical references.In light of the power, memory, ILP, and utilisation walls facing the computing industry, this work examines the hypothetical many-core approach to finding greater compute performance and efficiency. In order to achieve greater efficiency in an environment in which Moore’s law continues but TDP has been capped, a means of deriving performance from dark and dim silicon is needed. The many-core hypothesis is one approach to exploiting these available transistors efficiently. As understood in this work, it involves trading in hardware control complexity for hundreds to thousands of parallel simple processing elements, and operating at a clock speed sufficiently low as to allow the efficiency gains of near threshold voltage operation. Performance is there- fore dependant on exploiting a new degree of fine-grained parallelism such as is currently only found in GPGPUs, but in a manner that is not as restrictive in application domain range. While removing the complex control hardware of traditional CPUs provides space for more arithmetic hardware, a basic level of control is still required. For a number of reasons this work chooses to replace this control largely with static scheduling. This pushes the burden of control primarily to the software and specifically the compiler, rather not to the programmer or to an application specific means of control simplification. An existing legacy tool chain capable of autoparallelising sequential Fortran code to the degree of parallelism necessary for many-core exists. This work implements a many-core architecture to match it. Prototyping the design on an FPGA, it is possible to examine the real world performance of the compiler-architecture system to a greater degree than simulation only would allow. Comparing theoretical peak performance and real performance in a case study application, the system is found to be more efficient than any other reviewed, but to also significantly under perform relative to current competing architectures. This failing is apportioned to taking the need for simple hardware too far, and an inability to implement static scheduling mitigating tactics due to lack of support for such in the compiler

    State of the art baseband DSP platforms for Software Defined Radio: A survey

    Get PDF
    Software Defined Radio (SDR) is an innovative approach which is becoming a more and more promising technology for future mobile handsets. Several proposals in the field of embedded systems have been introduced by different universities and industries to support SDR applications. This article presents an overview of current platforms and analyzes the related architectural choices, the current issues in SDR, as well as potential future trends.Peer reviewe
    corecore