64 research outputs found

    Efficient satisfiability solver

    Get PDF
    The past few decades saw great improvements in the performance of satisfiability (SAT) solvers. In this thesis, we discuss the state-of-the-art techniques used in building an efficient SAT solver. Modern SAT solvers are mainly constituted by the following components: decision heuristics, Boolean constraint propagation, conflict analysis, restart, clause deletion and preprocessing. Various algorithms and implementations in each component will be discussed and analyzed. Then we propose a new backtracking strategy, partial backtracking, which can be easily implemented in SAT solvers. It is essentially an extension of the backtracking strategy used in most SAT solvers. With partial backtracking, the solver consecutively amends the variable assignments instead of discarding them completely so that it does not backtrack as many levels as the classic strategy does after analyzing a conflict. We implemented this strategy in our solver Nigma and the experiments show that the solver benefits from this adjustment

    A Time Leap Challenge for SAT Solving

    Full text link
    We compare the impact of hardware advancement and algorithm advancement for SAT solving over the last two decades. In particular, we compare 20-year-old SAT-solvers on new computer hardware with modern SAT-solvers on 20-year-old hardware. Our findings show that the progress on the algorithmic side has at least as much impact as the progress on the hardware side.Comment: Authors' version of a paper which is to appear in the proceedings of CP'202

    Solving Huge Instances with Intel(R) SAT Solver

    Get PDF

    Enumerating Disjoint Partial Models without Blocking Clauses

    Full text link
    A basic algorithm for enumerating disjoint propositional models (disjoint AllSAT) is based on adding blocking clauses incrementally, ruling out previously found models. On the one hand, blocking clauses have the potential to reduce the number of generated models exponentially, as they can handle partial models. On the other hand, they need exponential space and slow down unit propagation. We propose a new approach that allows for enumerating disjoint partial models with no need for blocking clauses by integrating: Conflict-Driven Clause-Learning (CDCL), Chronological Backtracking (CB), and methods for shrinking models (Implicant Shrinking). Experiments clearly show the benefits of our novel approach

    Preprocessing algorithms for SAT and Pseudo-Boolean solvers

    Get PDF
    Many real-life problems can be expressed as a set of restrictions. If those restrictions can be satisfied, then there's a solution to the problem, otherwise, the problem can be classified as not solvable. The set of those problems that can be codified using boolean formulas, that is to say, where the variables of the problems can take the values 0 and 1, are wildly known as SATISFIABILITY (SAT) problems. Therefore, if a program is capable of assigning values to the variables such that all the restrictions of a given problem are satisfied, then the solution to the problem is found. Although many problems can be easily represented this way, deciding whether there's a solution to the problem or giving a solution if it exists is not easy to compute. SAT is the first family of problems proven to be NP-Complete by Stephen Cook and Leonid Levin. Therefore, there's no known algorithm that runs in polynomial time capable of solving this kind of problem. This project tries to transform the SAT problem into an LP problem, as well as applying preprocessing techniques to express the information in a more optimized way for the LP solver

    Methoden und Beschreibungssprachen zur Modellierung und Verifikation vonSchaltungen und Systemen: MBMV 2015 - Tagungsband, Chemnitz, 03. - 04. März 2015

    Get PDF
    Der Workshop Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen (MBMV 2015) findet nun schon zum 18. mal statt. Ausrichter sind in diesem Jahr die Professur Schaltkreis- und Systementwurf der Technischen Universität Chemnitz und das Steinbeis-Forschungszentrum Systementwurf und Test. Der Workshop hat es sich zum Ziel gesetzt, neueste Trends, Ergebnisse und aktuelle Probleme auf dem Gebiet der Methoden zur Modellierung und Verifikation sowie der Beschreibungssprachen digitaler, analoger und Mixed-Signal-Schaltungen zu diskutieren. Er soll somit ein Forum zum Ideenaustausch sein. Weiterhin bietet der Workshop eine Plattform für den Austausch zwischen Forschung und Industrie sowie zur Pflege bestehender und zur Knüpfung neuer Kontakte. Jungen Wissenschaftlern erlaubt er, ihre Ideen und Ansätze einem breiten Publikum aus Wissenschaft und Wirtschaft zu präsentieren und im Rahmen der Veranstaltung auch fundiert zu diskutieren. Sein langjähriges Bestehen hat ihn zu einer festen Größe in vielen Veranstaltungskalendern gemacht. Traditionell sind auch die Treffen der ITGFachgruppen an den Workshop angegliedert. In diesem Jahr nutzen zwei im Rahmen der InnoProfile-Transfer-Initiative durch das Bundesministerium für Bildung und Forschung geförderte Projekte den Workshop, um in zwei eigenen Tracks ihre Forschungsergebnisse einem breiten Publikum zu präsentieren. Vertreter der Projekte Generische Plattform für Systemzuverlässigkeit und Verifikation (GPZV) und GINKO - Generische Infrastruktur zur nahtlosen energetischen Kopplung von Elektrofahrzeugen stellen Teile ihrer gegenwärtigen Arbeiten vor. Dies bereichert denWorkshop durch zusätzliche Themenschwerpunkte und bietet eine wertvolle Ergänzung zu den Beiträgen der Autoren. [... aus dem Vorwort

    TOOL-ASSISTED VALIDATION AND VERIFICATION TECHNIQUES FOR STATE-BASED FORMAL METHODS

    Get PDF
    To tackle the growing complexity of developing modern software systems that usually have embedded and distributed nature, and more and more involve safety critical aspects, formal methods (FMs) have been affirmed as an efficient approach to ensure the quality and correctness of the design, that permits to discover errors yet at the early stages of the system development. Among the several FMs available, some of them can be described as state-based, since they describe systems by using the notions of state and transitions between states. State-based FMs are sometimes preferred since they produce specifications that are more intuitive, being the notions of state and transition close to the notions of program state and program execution that are familiar to any developer. Moreover, state-based FMs are usually executable and permit to be simulated, so having an abstraction of the execution of the system under development. The aim of the thesis is to provide tool-assisted techniques that help the adoption of state-based FMs. In particular we address four main goals: 1) identifying a process for the development of an integrated framework around a formal method. The adoption of a formal method is often prevented by the lack of tools to support the user in the different development activities, as model editing, validation, verification, etc. Moreover, also when tools are available, they have usually been developed to target only one aspect of the system development process. So, having a well-engineered process that helps in the development of concrete notations and tools for a FM can make FMs of practical application. 2) promoting the integration of different FMs. Indeed, having only one formal notation, for doing different formal activities during the development of the system, is preferable than having a different notation for each formal activity. Moreover such notation should be high-level: working with high level notations is definitely easier than working with low-level ones, and the produced specifications are usually more readable. This goal can be seen as a sub-goal of the first goal; indeed, in a framework around a formal method, it should also be possible to integrate other formal methods that better address some particular formal activities. 3) helping the user in writing correct specifications. The basic assumption of any formal technique is that the specification, representing the desired properties of the system or the model of the system, is correct. However, in case the specification is not correct, all the verification activities based on the specification produce results that are meaningless. So, validation techniques should assure that the specification reflects the intended requirements; besides traditional simulation (user-guided or scenario-based), also model review techniques, checking for common quality attributes that any specification should have, are a viable solution. 4) reducing the distance between the formal specification and the actual implementation of the system. Several FMs work on a formal description of the system which is assumed to reflect the actual implementation; however, in practice, the formal specification and the actual implementation could be not conformant. A solution is to obtain the implementation, through refinements steps, from the formal specification, and proving that the refinements steps are correct. A different viable solution is to link the implementation with its formal specification and check, during the program execution, if they are conformant

    Fundamental Approaches to Software Engineering

    Get PDF
    This open access book constitutes the proceedings of the 25th International Conference on Fundamental Approaches to Software Engineering, FASE 2022, which was held during April 4-5, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 17 regular papers presented in this volume were carefully reviewed and selected from 64 submissions. The proceedings also contain 3 contributions from the Test-Comp Competition. The papers deal with the foundations on which software engineering is built, including topics like software engineering as an engineering discipline, requirements engineering, software architectures, software quality, model-driven development, software processes, software evolution, AI-based software engineering, and the specification, design, and implementation of particular classes of systems, such as (self-)adaptive, collaborative, AI, embedded, distributed, mobile, pervasive, cyber-physical, or service-oriented applications
    • …
    corecore