63 research outputs found

    Cache "less for more" in information-centric networks (extended version)

    Get PDF
    Ubiquitous in-network caching is one of the key aspects of information-centric networking (ICN) which has received widespread research interest in recent years. In one of the key relevant proposals known as Content-Centric Networking (CCN), the premise is that leveraging in-network caching to store content in every node along the delivery path can enhance content delivery. We question such an indiscriminate universal caching strategy and investigate whether caching less can actually achieve more. More specifically, we study the problem of en route caching and investigate if caching in only a subset of nodes along the delivery path can achieve better performance in terms of cache and server hit rates. We first study the behavior of CCN's ubiquitous caching and observe that even naïve random caching at a single intermediate node along the delivery path can achieve similar and, under certain conditions, even better caching gain. Motivated by this, we propose a centrality-based caching algorithm by exploiting the concept of (ego network) betweenness centrality to improve the caching gain and eliminate the uncertainty in the performance of the simplistic random caching strategy. Our results suggest that our solution can consistently achieve better gain across both synthetic and real network topologies that have different structural properties. We further find that the effectiveness of our solution is correlated to the precise structure of the network topology whereby the scheme is effective in topologies that exhibit power law betweenness distribution (as in Internet AS and WWW networks)

    Content Delivery Latency of Caching Strategies for Information-Centric IoT

    Full text link
    In-network caching is a central aspect of Information-Centric Networking (ICN). It enables the rapid distribution of content across the network, alleviating strain on content producers and reducing content delivery latencies. ICN has emerged as a promising candidate for use in the Internet of Things (IoT). However, IoT devices operate under severe constraints, most notably limited memory. This means that nodes cannot indiscriminately cache all content; instead, there is a need for a caching strategy that decides what content to cache. Furthermore, many applications in the IoT space are timesensitive; therefore, finding a caching strategy that minimises the latency between content request and delivery is desirable. In this paper, we evaluate a number of ICN caching strategies in regards to latency and hop count reduction using IoT devices in a physical testbed. We find that the topology of the network, and thus the routing algorithm used to generate forwarding information, has a significant impact on the performance of a given caching strategy. To the best of our knowledge, this is the first study that focuses on latency effects in ICN-IoT caching while using real IoT hardware, and the first to explicitly discuss the link between routing algorithm, network topology, and caching effects.Comment: 10 pages, 9 figures, journal pape

    A Low-Complexity Approach to Distributed Cooperative Caching with Geographic Constraints

    Get PDF
    We consider caching in cellular networks in which each base station is equipped with a cache that can store a limited number of files. The popularity of the files is known and the goal is to place files in the caches such that the probability that a user at an arbitrary location in the plane will find the file that she requires in one of the covering caches is maximized. We develop distributed asynchronous algorithms for deciding which contents to store in which cache. Such cooperative algorithms require communication only between caches with overlapping coverage areas and can operate in asynchronous manner. The development of the algorithms is principally based on an observation that the problem can be viewed as a potential game. Our basic algorithm is derived from the best response dynamics. We demonstrate that the complexity of each best response step is independent of the number of files, linear in the cache capacity and linear in the maximum number of base stations that cover a certain area. Then, we show that the overall algorithm complexity for a discrete cache placement is polynomial in both network size and catalog size. In practical examples, the algorithm converges in just a few iterations. Also, in most cases of interest, the basic algorithm finds the best Nash equilibrium corresponding to the global optimum. We provide two extensions of our basic algorithm based on stochastic and deterministic simulated annealing which find the global optimum. Finally, we demonstrate the hit probability evolution on real and synthetic networks numerically and show that our distributed caching algorithm performs significantly better than storing the most popular content, probabilistic content placement policy and Multi-LRU caching policies.Comment: 24 pages, 9 figures, presented at SIGMETRICS'1

    Enhancing multi-source content delivery in content-centric networks with fountain coding

    Get PDF
    Fountain coding has been considered as especially suitable for lossy environments, such as wireless networks, as it provides redundancy while reducing coordination overheads between sender(s) and receiver(s). As such it presents beneficial properties for multi-source and/or multicast communication. In this paper we investigate enhancing/increasing multi-source content delivery efficiency in the context of Content-Centric Networking (CCN) with the usage of fountain codes. In particular, we examine whether the combination of fountain coding with the in-network caching capabilities of CCN can further improve performance. We also present an enhancement of CCN's Interest forwarding mechanism that aims at minimizing duplicate transmissions that may occur in a multi-source transmission scenario, where all available content providers and caches with matching (cached) content transmit data packets simultaneously. Our simulations indicate that the use of fountain coding in CCN is a valid approach that further increases network performance compared to traditional schemes

    Performance evaluation of caching placement algorithms in named data network for video on demand service

    Get PDF
    The purpose of this study is to evaluate the performance of caching placement algorithms (LCD, LCE, Prob, Pprob, Cross, Centrality, and Rand) in Named Data Network (NDN) for Video on Demand (VoD). This study aims to increment the service quality and to decrement the time of download. There are two stages of activities resulted in the outcome of the study: The first is to determine the causes of delay performance in NDN cache algorithms used in VoD workload. The second activity is the evaluation of the seven cache placement algorithms on the cloud of video content in terms of the key performance metrics: delay time, average cache hit ratio, total reduction in the network footprint, and reduction in load. The NS3 simulations and the Internet2 topology were used to evaluate and analyze the findings of each algorithm, and to compare the results based on cache sizes: 1GB, 10GB, 100GB, and 1TB. This study proves that the different user requests of online videos would lead to delay in network performance. In addition to that the delay also caused by the high increment of video requests. Also, the outcomes led to conclude that the increase in cache capacity leads to make the placement algorithms have a significant increase in the average cache hit ratio, a reduction in server load, and the total reduction in network footprint, which resulted in obtaining a minimized delay time. In addition to that, a conclusion was made that Centrality is the worst cache placement algorithm based on the results obtained

    Proxcache: A new cache deployment strategy in information-centric network for mitigating path and content redundancy

    Get PDF
    One of the promising paradigms for resource sharing with maintaining the basic Internet semantics is the Information-Centric Networking (ICN). ICN distinction with the current Internet is its ability to refer contents by names with partly dissociating the host-to-host practice of Internet Protocol addresses. Moreover, content caching in ICN is the major action of achieving content networking to reduce the amount of server access. The current caching practice in ICN using the Leave Copy Everywhere (LCE) progenerate problems of over deposition of contents known as content redundancy, path redundancy, lesser cache-hit rates in heterogeneous networks and lower content diversity. This study proposes a new cache deployment strategy referred to as ProXcache to acquire node relationships using hyperedge concept of hypergraph for cache positioning. The study formulates the relationships through the path and distance approximation to mitigate content and path redundancy. The study adopted the Design Research Methodology approach to achieve the slated research objectives. ProXcache was investigated using simulation on the Abilene, GEANT and the DTelekom network topologies for LCE and ProbCache caching strategies with the Zipf distribution to differ content categorization. The results show the overall content and path redundancy are minimized with lesser caching operation of six depositions per request as compared to nine and nineteen for ProbCache and LCE respectively. ProXcache yields better content diversity ratio of 80% against 20% and 49% for LCE and ProbCache respectively as the cache sizes varied. ProXcache also improves the cache-hit ratio through proxy positions. These thus, have significant influence in the development of the ICN for better management of contents towards subscribing to the Future Internet
    corecore