76 research outputs found

    Reconfigurable fully constrained cable-driven parallel mechanism for avoiding collision between cables with human

    Get PDF
    Productivity can be increased by manipulators tracking the desired trajectory with some constraints. Humans as moving obstacles in a shared workspace are one of the most challenging problems for cable-driven parallel mechanisms (CDPMs) that are considered in this research. One of the essential primary issues in CDPM is collision avoidance among cables and humans in the shared workspace. This paper presents a model and simulation of a reconfigurable, fully constrained CDPM enabling detection and avoidance of cable–human collision. In this method, unlike conventional CDPMs where the attachment points are fixed, the attachment points on the rails can be moved (up and down on their rails), and then the geometric configuration is adapted. Karush–Kuhn–Tucker method is proposed, which focuses on estimating the shortest distance among moving obstacles (human limbs) and all cables. When cable and limbs are close to colliding, the new idea of reconfiguration is presented by moving the cable’s attachment point on the rail to increase the distance between the cables and human limbs while they are both moving. Also, the trajectory of the end effector remains unchanged. Some simulation results of reconfiguration theory as a new approach are shown for the eight-cable-driven parallel manipulator, including the workspace boundary variation. The proposed method could find a collision-free predefined path, according to the simulation results

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version

    Advances in Robot Kinematics : Proceedings of the 15th international conference on Advances in Robot Kinematics

    Get PDF
    International audienceThe motion of mechanisms, kinematics, is one of the most fundamental aspect of robot design, analysis and control but is also relevant to other scientific domains such as biome- chanics, molecular biology, . . . . The series of books on Advances in Robot Kinematics (ARK) report the latest achievement in this field. ARK has a long history as the first book was published in 1991 and since then new issues have been published every 2 years. Each book is the follow-up of a single-track symposium in which the participants exchange their results and opinions in a meeting that bring together the best of world’s researchers and scientists together with young students. Since 1992 the ARK symposia have come under the patronage of the International Federation for the Promotion of Machine Science-IFToMM.This book is the 13th in the series and is the result of peer-review process intended to select the newest and most original achievements in this field. For the first time the articles of this symposium will be published in a green open-access archive to favor free dissemination of the results. However the book will also be o↵ered as a on-demand printed book.The papers proposed in this book show that robot kinematics is an exciting domain with an immense number of research challenges that go well beyond the field of robotics.The last symposium related with this book was organized by the French National Re- search Institute in Computer Science and Control Theory (INRIA) in Grasse, France

    Bio­-inspired approaches to the control and modelling of an anthropomimetic robot

    Get PDF
    Introducing robots into human environments requires them to handle settings designed specifically for human size and morphology, however, large, conventional humanoid robots with stiff, high powered joint actuators pose a significant danger to humans. By contrast, “anthropomimetic” robots mimic both human morphology and internal structure; skeleton, muscles, compliance and high redundancy. Although far safer, their resultant compliant structure presents a formidable challenge to conventional control. Here we review, and seek to address, characteristic control issues of this class of robot, whilst exploiting their biomimetic nature by drawing upon biological motor control research. We derive a novel learning controller for discovering effective reaching actions created through sustained activation of one or more muscle synergies, an approach which draws upon strong, recent evidence from animal and humans studies, but is almost unexplored to date in musculoskeletal robot literature. Since the best synergies for a given robot will be unknown, we derive a deliberately simple reinforcement learning approach intended to allow their emergence, in particular those patterns which aid linearization of control. We also draw upon optimal control theories to encourage the emergence of smoother movement by incorporating signal dependent noise and trial repetition. In addition, we argue the utility of developing a detailed dynamic model of a complete robot and present a stable, physics-­‐‑based model, of the anthropomimetic ECCERobot, running in real time with 55 muscles and 88 degrees of freedom. Using the model, we find that effective reaching actions can be learned which employ only two sequential motor co-­‐‑activation patterns, each controlled by just a single common driving signal. Factor analysis shows the emergent muscle co-­‐‑activations can be reconstructed to significant accuracy using weighted combinations of only 13 common fragments, labelled “candidate synergies”. Using these synergies as drivable units the same controller learns the same task both faster and better, however, other reaching tasks perform less well, proportional to dissimilarity; we therefore propose that modifications enabling emergence of a more generic set of synergies are required. Finally, we propose a continuous controller for the robot, based on model predictive control, incorporating our model as a predictive component for state estimation, delay-­‐‑ compensation and planning, including merging of the robot and sensed environment into a single model. We test the delay compensation mechanism by controlling a second copy of the model acting as a proxy for the real robot, finding that performance is significantly improved if a precise degree of compensation is applied and show how rapidly an un-­‐‑compensated controller fails as the model accuracy degrades

    Autonomous Scene Understanding, Motion Planning, and Task Execution for Geometrically Adaptive Robotized Construction Work

    Full text link
    The construction industry suffers from such problems as high cost, poor quality, prolonged duration, and substandard safety. Robots have the potential to help alleviate such problems by becoming construction co-workers, yet they are seldom found operating on today’s construction sites. This is primarily due to the industry’s unstructured nature, substantial scale, and loose tolerances, which present additional challenges for robot operation. To help construction robots overcome such challenges and begin functioning as useful partners in human-robot construction teams, this research focuses on advancing two fundamental capabilities: enabling a robot to determine where it is located as it moves about a construction site, and enabling it to determine the actual pose and geometry of its workpieces so it can adapt its work plan and perform work. Specifically, this research first explores the use of a camera-marker sensor system for construction robot localization. To provide a mobile construction robot with the ability to estimate its own pose, a camera-marker sensor system was developed that is affordable, reconfigurable, and functional in GNSS-denied locations, such as urban areas and indoors. Excavation was used as a case study construction activity, where bucket tooth pose served as the key point of interest. The sensor system underwent several iterations of design and testing, and was found capable of estimating bucket tooth position with centimeter-level accuracy. This research also explores a framework to enable a construction robot to leverage its sensors and Building Information Model (BIM) to perceive and autonomously model the actual pose and geometry of its workpieces. Autonomous motion planning and execution methods were also developed and incorporated into the adaptive framework to enable a robot to adapt its work plan to the circumstances it encounters and perform work. The adaptive framework was implemented on a real robot and evaluated using joint filling as a case study construction task. The robot was found capable of identifying the true pose and geometry of a construction joint with an accuracy of 0.11 millimeters and 1.1 degrees. The robot also demonstrated the ability to autonomously adapt its work plan and successfully fill the joint. In all, this research is expected to serve as a basis for enabling robots to function more effectively in challenging construction environments. In particular, this work focuses on enabling robots to operate with greater functionality and versatility using methods that are generalizable to a range of construction activities. This research establishes the foundational blocks needed for humans and robots to leverage their respective strengths and function together as effective construction partners, which will lead to ubiquitous collaborative human-robot teams operating on actual construction sites, and ultimately bring the industry closer to realizing the extensive benefits of robotics.PHDCivil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/149785/1/klundeen_1.pd
    corecore