336 research outputs found

    Analyzing and Quantifying the Intrinsic Distributional Robustness of CVaR Reformulation for Chance Constrained Stochastic Programs

    Get PDF
    Chance constrained program (CCP) is a popular stochastic optimization method in power system planning and operation problems. Conditional Value-at-Risk (CVaR) provides a convex approximation for chance constraints which are nonconvex. Although CCP assumes an exact empirical distribution, and the optimum of a stochastic programming model is thought to be sensitive in the designated probability distribution, this letter discloses that CVaR reformulation of chance constraint is intrinsically robust. A pair of indices are proposed to quantify the maximum tolerable perturbation of the probability distribution, and can be computed from a computationally-cheap dichotomy search. An example on the coordinated capacity optimization of energy storage and transmission line for a remote wind farm validates the main claims. The above results demonstrate that stochastic optimization methods are not necessarily vulnerable to distributional uncertainty, and justify the positive effect of the conservatism brought by the CVaR reformulation.©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.fi=vertaisarvioitu|en=peerReviewed

    Distributionally Robust Optimization: A Review

    Full text link
    The concepts of risk-aversion, chance-constrained optimization, and robust optimization have developed significantly over the last decade. Statistical learning community has also witnessed a rapid theoretical and applied growth by relying on these concepts. A modeling framework, called distributionally robust optimization (DRO), has recently received significant attention in both the operations research and statistical learning communities. This paper surveys main concepts and contributions to DRO, and its relationships with robust optimization, risk-aversion, chance-constrained optimization, and function regularization

    Bayesian inference for hedge funds with stable distribution of returns

    Get PDF
    Recently, a body of academic literature has focused on the area of stable distributions and their application potential for improving our understanding of the risk of hedge funds. At the same time, research has sprung up that applies standard Bayesian methods to hedge fund evaluation. Little or no academic attention has been paid to the combination of these two topics. In this paper, we consider Bayesian inference for alpha-stable distributions with particular regard to hedge fund performance and risk assessment. After constructing Bayesian estimators for alpha-stable distributions in the context of an ARMA-GARCH time series model with stable innovations, we compare our risk evaluation and prediction results to the predictions of several competing conditional and unconditional models that are estimated in both the frequentist and Bayesian setting. We find that the conditional Bayesian model with stable innovations has superior risk prediction capabilities compared with other approaches and, in particular, produced better risk forecasts of the abnormally large losses that some hedge funds sustained in the months of September and October 2008. --

    Data-Driven Chance Constrained Programs over Wasserstein Balls

    Full text link
    We provide an exact deterministic reformulation for data-driven chance constrained programs over Wasserstein balls. For individual chance constraints as well as joint chance constraints with right-hand side uncertainty, our reformulation amounts to a mixed-integer conic program. In the special case of a Wasserstein ball with the 11-norm or the \infty-norm, the cone is the nonnegative orthant, and the chance constrained program can be reformulated as a mixed-integer linear program. Our reformulation compares favourably to several state-of-the-art data-driven optimization schemes in our numerical experiments.Comment: 25 pages, 9 figure

    Evaluating dynamic covariance matrix forecasting and portfolio optimization

    Get PDF
    In this thesis we have evaluated the covariance forecasting ability of the simple moving average, the exponential moving average and the dynamic conditional correlation models. Overall we found that a dynamic portfolio can gain significant improvements by implementing a multivariate GARCH forecast. We further divided the global investment universe into sectors and regions in order to investigate the relative portfolio performance of several asset allocation strategies with both variance and conditional value at risk as a risk measure. We found that the choice of risk measure does not seem to heavily impact the asset allocation. As comparison to the dynamic portfolios we added regional/sector portfolios which where rebalanced after a 3% threshold rule. The regional portfolio was constructed to mimic the current strategy of the Norwegian Pension Fund Global. The max Sharpe portfolio for regions had the highest risk adjusted return, but suffered from a very high turnover. After being modified however, this strategy turned out to be superior even after transaction costs were imposed
    corecore