8 research outputs found

    Data analytics methods for attack detection and localization in wireless networks

    Get PDF
    Wireless ad hoc network operates without any fixed infrastructure and centralized administration. It is a group of wirelessly connected nodes having the capability to work as host and router. Due to its features of open communication medium, dynamic changing topology, and cooperative algorithm, security is the primary concern when designing wireless networks. Compared to the traditional wired network, a clean division of layers may be sacrificed for performance in wireless ad hoc networks. As a result, they are vulnerable to various types of attacks at different layers of the protocol stack. In this paper, I present real-time series data analysis solutions to detect various attacks including in- band wormholes attack in the network layer, various MAC layer misbehaviors, and jamming attack in the physical layer. And, I also investigate the problem of node localization in wireless and sensor networks, where a total of n anchor nodes are used to determine the locations of other nodes based on the received signal strengths. A range-based machine learning algorithm is developed to tackle the challenges --Abstract, page iii

    Bibliographical review on cyber attacks from a control oriented perspective

    Get PDF
    This paper presents a bibliographical review of definitions, classifications and applications concerning cyber attacks in networked control systems (NCSs) and cyber-physical systems (CPSs). This review tackles the topic from a control-oriented perspective, which is complementary to information or communication ones. After motivating the importance of developing new methods for attack detection and secure control, this review presents security objectives, attack modeling, and a characterization of considered attacks and threats presenting the detection mechanisms and remedial actions. In order to show the properties of each attack, as well as to provide some deeper insight into possible defense mechanisms, examples available in the literature are discussed. Finally, open research issues and paths are presented.Peer ReviewedPostprint (author's final draft

    State of the art of cyber-physical systems security: An automatic control perspective

    Get PDF
    Cyber-physical systems are integrations of computation, networking, and physical processes. Due to the tight cyber-physical coupling and to the potentially disrupting consequences of failures, security here is one of the primary concerns. Our systematic mapping study sheds light on how security is actually addressed when dealing with cyber-physical systems from an automatic control perspective. The provided map of 138 selected studies is defined empirically and is based on, for instance, application fields, various system components, related algorithms and models, attacks characteristics and defense strategies. It presents a powerful comparison framework for existing and future research on this hot topic, important for both industry and academia

    Attacks on self-driving cars and their countermeasures : a survey

    Get PDF
    Intelligent Traffic Systems (ITS) are currently evolving in the form of a cooperative ITS or connected vehicles. Both forms use the data communications between Vehicle-To-Vehicle (V2V), Vehicle-To-Infrastructure (V2I/I2V) and other on-road entities, and are accelerating the adoption of self-driving cars. The development of cyber-physical systems containing advanced sensors, sub-systems, and smart driving assistance applications over the past decade is equipping unmanned aerial and road vehicles with autonomous decision-making capabilities. The level of autonomy depends upon the make-up and degree of sensor sophistication and the vehicle's operational applications. As a result, self-driving cars are being compromised perceived as a serious threat. Therefore, analyzing the threats and attacks on self-driving cars and ITSs, and their corresponding countermeasures to reduce those threats and attacks are needed. For this reason, some survey papers compiling potential attacks on VANETs, ITSs and self-driving cars, and their detection mechanisms are available in the current literature. However, up to our knowledge, they have not covered the real attacks already happened in self-driving cars. To bridge this research gap, in this paper, we analyze the attacks that already targeted self-driving cars and extensively present potential cyber-Attacks and their impacts on those cars along with their vulnerabilities. For recently reported attacks, we describe the possible mitigation strategies taken by the manufacturers and governments. This survey includes recent works on how a self-driving car can ensure resilient operation even under ongoing cyber-Attack. We also provide further research directions to improve the security issues associated with self-driving cars. © 2013 IEEE

    Authentication and Integrity Protection at Data and Physical layer for Critical Infrastructures

    Get PDF
    This thesis examines the authentication and the data integrity services in two prominent emerging contexts such as Global Navigation Satellite Systems (GNSS) and the Internet of Things (IoT), analyzing various techniques proposed in the literature and proposing novel methods. GNSS, among which Global Positioning System (GPS) is the most widely used, provide affordable access to accurate positioning and timing with global coverage. There are several motivations to attack GNSS: from personal privacy reasons, to disrupting critical infrastructures for terrorist purposes. The generation and transmission of spoofing signals either for research purpose or for actually mounting attacks has become easier in recent years with the increase of the computational power and with the availability on the market of Software Defined Radios (SDRs), general purpose radio devices that can be programmed to both receive and transmit RF signals. In this thesis a security analysis of the main currently proposed data and signal level authentication mechanisms for GNSS is performed. A novel GNSS data level authentication scheme, SigAm, that combines the security of asymmetric cryptographic primitives with the performance of hash functions or symmetric key cryptographic primitives is proposed. Moreover, a generalization of GNSS signal layer security code estimation attacks and defenses is provided, improving their performance, and an autonomous anti-spoofing technique that exploits semi-codeless tracking techniques is introduced. Finally, physical layer authentication techniques for IoT are discussed, providing a trade-off between the performance of the authentication protocol and energy expenditure of the authentication process

    Detection of Anomalous Behavior of IoT/CPS Devices Using Their Power Signals

    Get PDF
    Embedded computing devices, in the Internet of Things (IoT) or Cyber-Physical Systems (CPS), are becoming pervasive in many domains around the world. Their wide deployment in simple applications (e.g., smart buildings, fleet management, and smart agriculture) or in more critical operations (e.g., industrial control, smart power grids, and self-driving cars) creates significant market potential ($ 4-11 trillion in annual revenue is expected by 2025). A main requirement for the success of such systems and applications is the capacity to ensure the performance of these devices. This task includes equipping them to be resilient against security threats and failures. Globally, several critical infrastructure applications have been the target of cyber attacks. These recent incidents, as well as the rich applicable literature, confirm that more research is needed to overcome such challenges. Consequently, the need for robust approaches that detect anomalous behaving devices in security and safety-critical applications has become paramount. Solving such a problem minimizes different kinds of losses (e.g., confidential data theft, financial loss, service access restriction, or even casualties). In light of the aforementioned motivation and discussion, this thesis focuses on the problem of detecting the anomalous behavior of IoT/CPS devices by considering their side-channel information. Solving such a problem is extremely important in maintaining the security and dependability of critical systems and applications. Although several side-channel based approaches are found in the literature, there are still important research gaps that need to be addressed. First, the intrusive nature of the monitoring in some of the proposed techniques results in resources overhead and requires instrumentation of the internal components of a device, which makes them impractical. It also raises a data integrity flag. Second, the lack of realistic experimental power consumption datasets that reflect the normal and anomalous behaviors of IoT and CPS devices has prevented fair and coherent comparisons with the state of the art in this domain. Finally, most of the research to date has concentrated on the accuracy of detection and not the novelty of detecting new anomalies. Such a direction relies on: (i) the availability of labeled datasets; (ii) the complexity of the extracted features; and (iii) the available compute resources. These assumptions and requirements are usually unrealistic and unrepresentative. This research aims to bridge these gaps as follows. First, this study extends the state of the art that adopts the idea of leveraging the power consumption of devices as a signal and the concept of decoupling the monitoring system and the devices to be monitored to detect and classify the "operational health'' of the devices. Second, this thesis provides and builds power consumption-based datasets that can be utilized by AI as well as security research communities to validate newly developed detection techniques. The collected datasets cover a wide range of anomalous device behavior due to the main aspects of device security (i.e., confidentiality, integrity, and availability) and partial system failures. The extensive experiments include: a wide spectrum of various emulated malware scenarios; five real malware applications taken from the well-known Drebin dataset; distributed denial of service attack (DDOS) where an IoT device is treated as: (1) a victim of a DDOS attack, and (2) the source of a DDOS attack; cryptomining malware where the resources of an IoT device are being hijacked to be used to advantage of the attacker’s wish and desire; and faulty CPU cores. This level of extensive validation has not yet been reported in any study in the literature. Third, this research presents a novel supervised technique to detect anomalous device behavior based on transforming the problem into an image classification problem. The main aim of this methodology is to improve the detection performance. In order to achieve the goals of this study, the methodology combines two powerful computer vision tools, namely Histograms of Oriented Gradients (HOG) and a Convolutional Neural Network (CNN). Such a detection technique is not only useful in this present case but can contribute to most time-series classification (TSC) problems. Finally, this thesis proposes a novel unsupervised detection technique that requires only the normal behavior of a device in the training phase. Therefore, this methodology aims at detecting new/unseen anomalous behavior. The methodology leverages the power consumption of a device and Restricted Boltzmann Machine (RBM) AutoEncoders (AE) to build a model that makes them more robust to the presence of security threats. The methodology makes use of stacked RBM AE and Principal Component Analysis (PCA) to extract feature vector based on AE's reconstruction errors. A One-Class Support Vector Machine (OC-SVM) classifier is then trained to perform the detection task. Across 18 different datasets, both of our proposed detection techniques demonstrated high detection performance with at least ~ 88% accuracy and 85% F-Score on average. The empirical results indicate the effectiveness of the proposed techniques and demonstrated improved detection performance gain of 9% - 17% over results reported in other methods
    corecore