1,541 research outputs found

    Real time motion estimation using a neural architecture implemented on GPUs

    Get PDF
    This work describes a neural network based architecture that represents and estimates object motion in videos. This architecture addresses multiple computer vision tasks such as image segmentation, object representation or characterization, motion analysis and tracking. The use of a neural network architecture allows for the simultaneous estimation of global and local motion and the representation of deformable objects. This architecture also avoids the problem of finding corresponding features while tracking moving objects. Due to the parallel nature of neural networks, the architecture has been implemented on GPUs that allows the system to meet a set of requirements such as: time constraints management, robustness, high processing speed and re-configurability. Experiments are presented that demonstrate the validity of our architecture to solve problems of mobile agents tracking and motion analysis.This work was partially funded by the Spanish Government DPI2013-40534-R grant and Valencian Government GV/2013/005 grant

    Acceleration of stereo-matching on multi-core CPU and GPU

    Get PDF
    This paper presents an accelerated version of a dense stereo-correspondence algorithm for two different parallelism enabled architectures, multi-core CPU and GPU. The algorithm is part of the vision system developed for a binocular robot-head in the context of the CloPeMa 1 research project. This research project focuses on the conception of a new clothes folding robot with real-time and high resolution requirements for the vision system. The performance analysis shows that the parallelised stereo-matching algorithm has been significantly accelerated, maintaining 12x and 176x speed-up respectively for multi-core CPU and GPU, compared with non-SIMD singlethread CPU. To analyse the origin of the speed-up and gain deeper understanding about the choice of the optimal hardware, the algorithm was broken into key sub-tasks and the performance was tested for four different hardware architectures

    High Lundquist Number Simulations of Parker\u27s Model of Coronal Heating: Scaling and Current Sheet Statistics Using Heterogeneous Computing Architectures

    Get PDF
    Parker\u27s model [Parker, Astrophys. J., 174, 499 (1972)] is one of the most discussed mechanisms for coronal heating and has generated much debate. We have recently obtained new scaling results for a 2D version of this problem suggesting that the heating rate becomes independent of resistivity in a statistical steady state [Ng and Bhattacharjee, Astrophys. J., 675, 899 (2008)]. Our numerical work has now been extended to 3D using high resolution MHD numerical simulations. Random photospheric footpoint motion is applied for a time much longer than the correlation time of the motion to obtain converged average coronal heating rates. Simulations are done for different values of the Lundquist number to determine scaling. In the high-Lundquist number limit (S \u3e 1000), the coronal heating rate obtained is consistent with a trend that is independent of the Lundquist number, as predicted by previous analysis and 2D simulations. We will present scaling analysis showing that when the dissipation time is comparable or larger than the correlation time of the random footpoint motion, the heating rate tends to become independent of Lundquist number, and that the magnetic energy production is also reduced significantly. We also present a comprehensive reprogramming of our simulation code to run on NVidia graphics processing units using the Compute Unified Device Architecture (CUDA) and report code performance on several large scale heterogenous machines

    Real time motion estimation using a neural architecture implemented on GPUs

    Get PDF
    This work describes a neural network based architecture that represents and estimates object motion in videos. This architecture addresses multiple computer vision tasks such as image segmentation, object representation or characterization, motion analysis and tracking. The use of a neural network architecture allows for the simultaneous estimation of global and local motion and the representation of deformable objects. This architecture also avoids the problem of finding corresponding features while tracking moving objects. Due to the parallel nature of neural networks, the architecture has been implemented on GPUs that allows the system to meet a set of requirements such as: time constraints management, robustness, high processing speed and re-configurability. Experiments are presented that demonstrate the validity of our architecture to solve problems of mobile agents tracking and motion analysis

    Indoor assistance for visually impaired people using a RGB-D camera

    Get PDF
    In this paper a navigational aid for visually impaired people is presented. The system uses a RGB-D camera to perceive the environment and implements self-localization, obstacle detection and obstacle classification. The novelty of this work is threefold. First, self-localization is performed by means of a novel camera tracking approach that uses both depth and color information. Second, to provide the user with semantic information, obstacles are classified as walls, doors, steps and a residual class that covers isolated objects and bumpy parts on the floor. Third, in order to guarantee real time performance, the system is accelerated by offloading parallel operations to the GPU. Experiments demonstrate that the whole system is running at 9 Hz

    GPU accelerated Monte Carlo simulation of Brownian motors dynamics with CUDA

    Full text link
    This work presents an updated and extended guide on methods of a proper acceleration of the Monte Carlo integration of stochastic differential equations with the commonly available NVIDIA Graphics Processing Units using the CUDA programming environment. We outline the general aspects of the scientific computing on graphics cards and demonstrate them with two models of a well known phenomenon of the noise induced transport of Brownian motors in periodic structures. As a source of fluctuations in the considered systems we selected the three most commonly occurring noises: the Gaussian white noise, the white Poissonian noise and the dichotomous process also known as a random telegraph signal. The detailed discussion on various aspects of the applied numerical schemes is also presented. The measured speedup can be of the astonishing order of about 3000 when compared to a typical CPU. This number significantly expands the range of problems solvable by use of stochastic simulations, allowing even an interactive research in some cases.Comment: 21 pages, 5 figures; Comput. Phys. Commun., accepted, 201
    corecore