102 research outputs found

    Histogram analysis of magnetic resonance images: evaluation of intra-tumoral heterogeneity and correlation with pathological findings in solid pancreatic tumors.

    Get PDF
    Objectives To evaluate magnetic resonance (MR)-derived whole-tumor histogram analysis parameters in predicting aggressiveness of pancreatic ductal adenocarcinomas (PDACs) and neuroendocrine neoplasms (panNENs). Methods Pre-operative MR of 169 consecutive patients with PDAC or panNEN were retrospectively analyzed. T1-/T2-weighted images and apparent diffusion coefficient (ADC) maps were analyzed. Histogram-derived parameters were compared to several pathological features (grade, vascular infiltration, nodal and hepatic metastases) using Mann-Whitney U test. Diagnostic accuracy was assessed by receiver operating characteristic area under curve (ROC-AUC) analysis; sensitivity and specificity were assessed for each histogram parameter. Results No significant differences were found among histogram parameters for prediction of PDACs grade. ADCentropy was significantly higher in G2-3 panNENs with ROC-AUC 0.757; sensitivity was 83.3%. ADCentropy was significantly higher in PDACs with vascular involvement (p=.022; AUC=.641), with specificity of 92.2%. ADCskewness was significantly higher in PDACs with nodal metastases (p=.027; AUC=.642), with 72% specificity. ADCkurtosis was higher in panNENs with vascular involvement, nodal and hepatic metastases (p= .008, .021, and .008; ROC-AUC= 0.820, 0.709, and 0.820); sensitivity and specificity were: 85.7/74.3%; 36.8/96.5%; and 100/62.8%. No significant differences between groups were found for other histogram-derived parameters (p >.05). Conclusions Whole-tumors histogram analysis of ADC values is a valuable tool for predicting aggressiveness of PDACs and panNENs. Our results indicate that histogram metrics related to intra-tumor heterogeneity, as ADCentropy, ADCkurtosis and ADCskewness are the most accurate parameters for the identification of PDACs and panNENs with higher biological aggressiveness. Further and larger studies are needed to incorporate the results of the histogram analysis within decision support models and to mine these data to detect possible correlations with genomic patterns

    New Directions in Imaging Neuroendocrine Neoplasms

    Get PDF

    Radiomics analysis in ovarian cancer: A narrative review

    Get PDF
    Ovarian cancer (OC) is the second most common gynecological malignancy, accounting for about 14,000 deaths in 2020 in the US. The recognition of tools for proper screening, early diagnosis, and prognosis of OC is still lagging. The application of methods such as radiomics to medical images such as ultrasound scan (US), computed tomography (CT), magnetic resonance imaging (MRI), or positron emission tomography (PET) in OC may help to realize so-called “precision medicine” by developing new quantification metrics linking qualitative and/or quantitative data imaging to achieve clinical diagnostic endpoints. This narrative review aims to summarize the applications of radiomics as a support in the management of a complex pathology such as ovarian cancer. We give an insight into the current evidence on radiomics applied to different imaging methods

    Application of radiomics in diagnosis and treatment of lung cancer

    Get PDF
    Radiomics has become a research field that involves the process of converting standard nursing images into quantitative image data, which can be combined with other data sources and subsequently analyzed using traditional biostatistics or artificial intelligence (Al) methods. Due to the capture of biological and pathophysiological information by radiomics features, these quantitative radiomics features have been proven to provide fast and accurate non-invasive biomarkers for lung cancer risk prediction, diagnosis, prognosis, treatment response monitoring, and tumor biology. In this review, radiomics has been emphasized and discussed in lung cancer research, including advantages, challenges, and drawbacks

    Radiological evaluation of biomarkers for renal cell carcinoma

    Get PDF
    Role of MRI DWI sequences in the evaluation of early response to neo- angiogenesis inhibitors in metastatic renal cell carcinoma Purpose: Angiogenesis inhibitors have a potential role in treating metastatic renal cell carcinoma, but it is still not clear why some patients don't respond. Our objective was to look for DWI parameters able to identify patients with metastatic renal cell carcinoma who would not benefit from target therapy. RECIST1.1 was considered as Reference Standard. Methods & Materials: We prospectively enrolled 43 patients candidate to start angiogenesis inhibitors with at least one target lesion and who underwent 1,5T MRI examination with multiple bvalues DWI sequences (0,40,200,300,600): one week before (t0), 2 weeks after (t2) and 8 weeks (t8) after treatment beginning. ADC value was calculated drawing ROIs on 3 different planes. 33 patients with 38 lesions had suitable data for comparative evaluation. Results: At T8 follow-up 9 patients had partial response (PR), 20 table disease (SD), 4 progression disease (PD); average progression free survival was 272 days. PD group, as compared to DC or to PR showed significantly lower ADC values at b40 at t0 (p<0.05): we can assess that more vascularised lesions are more responsive to treatment. PD group have significantly lower ADC values then both other groups, at t0, t2 and t8, for all b-values (p<0.05). PFS and OS correlates well with ADC, in particular OS with ADC b40 at t0 (r=0,69). Coclusions: Results show that PD group has significantly lower ADC values than PR or DC everytime (t0, t2, t8) At t0 there is a better correlation between PFS or OS & ADC than PFS & dimensional criteria. ADC at t0 may help selecting patients with promising good response to angiogenesis inhibitors. Moreover at t0 and at t2 ADC has the potential to select patients who wouldn't benefit from angiogenesis inhibitors Nowadays, in the era of target therapy, it is crucial to select patients potentially responders. We have to look at cost/benefit ratio and at increasing costs of treatment options. DWI has the potential role to identify patients whose's tumor wouldn't benefit from target therapy, adding a value (ADC) to other imaging (e.g. DCE-MRI, texture imaging) and clinical parameters (e.g. miRNA) in a hypothetic multiparametric analysis.CT Texture Analysis in Clear Cell Renal Cell Carcinoma: a Radiogenomics Prospective Purpose: The aim of this study was to investigate whether quantitative parameters obtained from CT Texture Analysis (CTTA) correlate with expression of miRNA in clear cell Renal Cell Carcinoma (ccRCC). Methods and Materials: In a retrospective single centre study, multiphasic CT examination (with arterial, portal, equilibrium and urographic phases) was performed on 20 patients with clear cell renal carcinomas (14 men and 6 women; mean age 65 years ± 13). Measures of heterogeneity were obtained in post-processing by placing a ROI on the entire tumour and CTTA parameters such as entropy, kurtosis, skewness, mean, mean of positive pixels, and SD of pixel distribution histogram were measured using multiple filter settings. Quantitative data were correlated with the expression of miRNAs obtained from the same cohort of patients: 8 fresh frozen samples and 12 formalin-fixed paraffin-embedded samples (miR-21-5p, miR-210-3p, miR-185-5p, miR-221-3p, miR-145-5p). Both evaluations (miRNAs and CTTA) were performed on tumour tissues as well as on normal cortico-medullar tissues. Analysis of Variance with linear multiple regression model methods were obtained with SPSS statistic software. For all comparisons, statistical significance was assumed p<0.05 Results: We evidenced that CTTA has robust parameters (e.g. entropy, mean, sd) to distinguish normal from pathological tissues. Moreover, a higher coefficient of determination between entropy and miR-21-5p expression (R2 =0,25) was evidenced in tumour tissues as compared to normal tissues (R2 =0,15). Interestingly, excluding four patients with extreme over-expression of miR-21-5p, excellent relation between entropy and miR21-5p levels was found specifically in tumour samples (R2= 0,64; p<0.05). Conclusion: Entropy and miRNA-21-5p show promising correlation in ccRCC; in addiction CTTA features, in particular mean and entropy show a statistically significant increase in ccRCC as compared with normal renal parenchyma

    Virtual Biopsy in Soft Tissue Sarcoma. How Close Are We?

    Get PDF
    A shift in radiology to a data-driven specialty has been unlocked by synergistic developments in imaging biomarkers (IB) and computational science. This is advancing the capability to deliver "virtual biopsies" within oncology. The ability to non-invasively probe tumour biology both spatially and temporally would fulfil the potential of imaging to inform management of complex tumours; improving diagnostic accuracy, providing new insights into inter- and intra-tumoral heterogeneity and individualised treatment planning and monitoring. Soft tissue sarcomas (STS) are rare tumours of mesenchymal origin with over 150 histological subtypes and notorious heterogeneity. The combination of inter- and intra-tumoural heterogeneity and the rarity of the disease remain major barriers to effective treatments. We provide an overview of the process of successful IB development, the key imaging and computational advancements in STS including quantitative magnetic resonance imaging, radiomics and artificial intelligence, and the studies to date that have explored the potential biological surrogates to imaging metrics. We discuss the promising future directions of IBs in STS and illustrate how the routine clinical implementation of a virtual biopsy has the potential to revolutionise the management of this group of complex cancers and improve clinical outcomes

    Radiomics and imaging genomics in precision medicine

    Get PDF
    “Radiomics,” a field of study in which high-throughput data is extracted and large amounts of advanced quantitative imaging features are analyzed from medical images, and “imaging genomics,” the field of study of high-throughput methods of associating imaging features with genomic data, has gathered academic interest. However, a radiomics and imaging genomics approach in the oncology world is still in its very early stages and many problems remain to be solved. In this review, we will look through the steps of radiomics and imaging genomics in oncology, specifically addressing potential applications in each organ and focusing on technical issues

    Advances in the Diagnosis and Treatment of Thyroid Carcinoma

    Get PDF
    This reprint is related to the latest research in the field of thyroid surgery, including molecular and imaging diagnosis, surgical treatment, and the treatment of recurrent disease and advanced thyroid carcinoma

    A proposed methodology for detecting the malignant potential of pulmonary nodules in sarcoma using computed tomographic imaging and artificial intelligence-based models

    Get PDF
    The presence of lung metastases in patients with primary malignancies is an important criterion for treatment management and prognostication. Computed tomography (CT) of the chest is the preferred method to detect lung metastasis. However, CT has limited efficacy in differentiating metastatic nodules from benign nodules (e.g., granulomas due to tuberculosis) especially at early stages (&lt;5 mm). There is also a significant subjectivity associated in making this distinction, leading to frequent CT follow-ups and additional radiation exposure along with financial and emotional burden to the patients and family. Even 18F-fluoro-deoxyglucose positron emission technology-computed tomography (18F-FDG PET-CT) is not always confirmatory for this clinical problem. While pathological biopsy is the gold standard to demonstrate malignancy, invasive sampling of small lung nodules is often not clinically feasible. Currently, there is no non-invasive imaging technique that can reliably characterize lung metastases. The lung is one of the favored sites of metastasis in sarcomas. Hence, patients with sarcomas, especially from tuberculosis prevalent developing countries, can provide an ideal platform to develop a model to differentiate lung metastases from benign nodules. To overcome the lack of optimal specificity of CT scan in detecting pulmonary metastasis, a novel artificial intelligence (AI)-based protocol is proposed utilizing a combination of radiological and clinical biomarkers to identify lung nodules and characterize it as benign or metastasis. This protocol includes a retrospective cohort of nearly 2,000–2,250 sample nodules (from at least 450 patients) for training and testing and an ambispective cohort of nearly 500 nodules (from 100 patients; 50 patients each from the retrospective and prospective cohort) for validation. Ground-truth annotation of lung nodules will be performed using an in-house-built segmentation tool. Ground-truth labeling of lung nodules (metastatic/benign) will be performed based on histopathological results or baseline and/or follow-up radiological findings along with clinical outcome of the patient. Optimal methods for data handling and statistical analysis are included to develop a robust protocol for early detection and classification of pulmonary metastasis at baseline and at follow-up and identification of associated potential clinical and radiological markers
    • …
    corecore