4,283 research outputs found

    A hybrid method for traumatic brain injury lesion segmentation

    Get PDF
    Traumatic brain injuries are significant effects of disability and loss of life. Physicians employ computed tomography (CT) images to observe the trauma and measure its severity for diagnosis and treatment. Due to the overlap of hemorrhage and normal brain tissues, segmentation methods sometimes lead to false results. The study is more challenging to unitize the AI field to collect brain hemorrhage by involving patient datasets employing CT scans images. We propose a novel technique free-form object model for brain injury CT image segmentation based on superpixel image processing that uses CT to analyzing brain injuries, quite challenging to create a high outstanding simple linear iterative clustering (SLIC) method. The maintains a strategic distance of the segmentation image to reduced intensity boundaries. The segmentation image contains marked red hemorrhage to modify the free-form object model. The contour labelled by the red mark is the output from our free-form object model. We proposed a hybrid image segmentation approach based on the combined edge detection and dilation technique features. The approach diminishes computational costs, and the show accomplished 96.68% accuracy. The segmenting brain hemorrhage images are achieved in the clustered region to construct a free-form object model. The study also presents further directions on future research in this domain

    Neuroimaging of structural pathology and connectomics in traumatic brain injury: Toward personalized outcome prediction.

    Get PDF
    Recent contributions to the body of knowledge on traumatic brain injury (TBI) favor the view that multimodal neuroimaging using structural and functional magnetic resonance imaging (MRI and fMRI, respectively) as well as diffusion tensor imaging (DTI) has excellent potential to identify novel biomarkers and predictors of TBI outcome. This is particularly the case when such methods are appropriately combined with volumetric/morphometric analysis of brain structures and with the exploration of TBI-related changes in brain network properties at the level of the connectome. In this context, our present review summarizes recent developments on the roles of these two techniques in the search for novel structural neuroimaging biomarkers that have TBI outcome prognostication value. The themes being explored cover notable trends in this area of research, including (1) the role of advanced MRI processing methods in the analysis of structural pathology, (2) the use of brain connectomics and network analysis to identify outcome biomarkers, and (3) the application of multivariate statistics to predict outcome using neuroimaging metrics. The goal of the review is to draw the community's attention to these recent advances on TBI outcome prediction methods and to encourage the development of new methodologies whereby structural neuroimaging can be used to identify biomarkers of TBI outcome

    A Radiomics Approach to Traumatic Brain Injury Prediction in CT Scans

    Full text link
    Computer Tomography (CT) is the gold standard technique for brain damage evaluation after acute Traumatic Brain Injury (TBI). It allows identification of most lesion types and determines the need of surgical or alternative therapeutic procedures. However, the traditional approach for lesion classification is restricted to visual image inspection. In this work, we characterize and predict TBI lesions by using CT-derived radiomics descriptors. Relevant shape, intensity and texture biomarkers characterizing the different lesions are isolated and a lesion predictive model is built by using Partial Least Squares. On a dataset containing 155 scans (105 train, 50 test) the methodology achieved 89.7 % accuracy over the unseen data. When a model was build using only texture features, a 88.2 % accuracy was obtained. Our results suggest that selected radiomics descriptors could play a key role in brain injury prediction. Besides, the proposed methodology is close to reproduce radiologists decision making. These results open new possibilities for radiomics-inspired brain lesion detection, segmentation and prediction.Comment: Submitted to ISBI 201

    Hybrids Otsu method, Feature region and Mathematical Morphology for Calculating Volume Hemorrhage Brain on CT-Scan Image and 3D Reconstruction

    Get PDF
    Traumatic brain injury is a pathological process of brain tissue that is not degenerative or congenital, but rather due to external mechanical force, which causes physical disorders, cognitive function, and psychosocial. These disorders can be permanent or temporary and accompanied by the loss of or change in level of consciousness. Segmentation techniques for Computed Tomography Scanner (CT scan) of the brain is one of the methods used by the radiologist to detect abnormalities or brain hemorrhage that occurs in the brain.  This paper discusses the extraction area of a brain hemorrhage on each image slice CT scan and 3D reconstruction, making it possible to visualize the 3D shape and calculating the volume of a brain hemorrhage. Extraction of brain hemorrhage area is based on a combination of Otsu algorithm, the algorithm Morphological features and algorithms region. For the reconstruction of a 3D brain hemorrhage area of the bleeding area on a 2D slice is done by using a linear interpolation approach

    TBI Contusion Segmentation from MRI using Convolutional Neural Networks

    Full text link
    Traumatic brain injury (TBI) is caused by a sudden trauma to the head that may result in hematomas and contusions and can lead to stroke or chronic disability. An accurate quantification of the lesion volumes and their locations is essential to understand the pathophysiology of TBI and its progression. In this paper, we propose a fully convolutional neural network (CNN) model to segment contusions and lesions from brain magnetic resonance (MR) images of patients with TBI. The CNN architecture proposed here was based on a state of the art CNN architecture from Google, called Inception. Using a 3-layer Inception network, lesions are segmented from multi-contrast MR images. When compared with two recent TBI lesion segmentation methods, one based on CNN (called DeepMedic) and another based on random forests, the proposed algorithm showed improved segmentation accuracy on images of 18 patients with mild to severe TBI. Using a leave-one-out cross validation, the proposed model achieved a median Dice of 0.75, which was significantly better (p<0.01) than the two competing methods.Comment: https://ieeexplore.ieee.org/abstract/document/8363545/, IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018

    Computer-aided segmentation and estimation of indices in brain CT scans

    Get PDF
    The importance of neuro-imaging as one of the biomarkers for diagnosis and prognosis of pathologies and traumatic cases is well established. Doctors routinely perform linear measurements on neuro-images to ascertain severity and extent of the pathology or trauma from significant anatomical changes. However, it is a tedious and time consuming process and manually assessing and reporting on large volume of data is fraught with errors and variation. In this paper we present a novel technique for segmentation of significant anatomical landmarks using artificial neural networks and estimation of various ratios and indices performed on brain CT scans. The proposed method is efficient and robust in detecting and measuring sizes of anatomical structures on non-contrast CT scans and has been evaluated on images from subjects with ages between 5 to 85 years. Results show that our method has average ICC of ≥0.97 and, hence, can be used in processing data for further use in research and clinical environment
    • …
    corecore