479 research outputs found

    Mice haploinsufficient for Map2k7, a gene involved in neurodevelopment and risk for schizophrenia, show impaired attention, a vigilance decrement deficit and unstable cognitive processing in an attentional task: impact of minocycline

    Get PDF
    Rationale: Members of the c-Jun N-terminal kinase (JNK) family of mitogen-activated protein (MAP) kinases, and the upstream kinase MKK7, have all been strongly linked with synaptic plasticity and with the development of the neocortex. However, the impact of disruption of this pathway on cognitive function is unclear. Objective: In the current study, we test the hypothesis that reduced MKK7 expression is sufficient to cause cognitive impairment. Methods: Attentional function in mice haploinsufficient for Map2k7 (Map2k7+/− mice) was investigated using the five-choice serial reaction time task (5-CSRTT). Results: Once stable performance had been achieved, Map2k7+/− mice showed a distinctive attentional deficit, in the form of an increased number of missed responses, accompanied by a more pronounced decrement in performance over time and elevated intra-individual reaction time variability. When performance was reassessed after administration of minocycline—a tetracycline antibiotic currently showing promise for the improvement of attentional deficits in patients with schizophrenia—signs of improvement in attentional performance were detected. Conclusions: Overall, Map2k7 haploinsufficiency causes a distinctive pattern of cognitive impairment strongly suggestive of an inability to sustain attention, in accordance with those seen in psychiatric patients carrying out similar tasks. This may be important for understanding the mechanisms of cognitive dysfunction in clinical populations and highlights the possibility of treating some of these deficits with minocycline

    Performance deficits of NK1 receptor knockout mice in the 5 choice serial reaction time task: effects of d Amphetamine, stress and time of day.

    Get PDF
    Background The neurochemical status and hyperactivity of mice lacking functional substance P-preferring NK1 receptors (NK1R-/-) resemble abnormalities in Attention Deficit Hyperactivity Disorder (ADHD). Here we tested whether NK1R-/- mice express other core features of ADHD (impulsivity and inattentiveness) and, if so, whether they are diminished by d-amphetamine, as in ADHD. Prompted by evidence that circadian rhythms are disrupted in ADHD, we also compared the performance of mice that were trained and tested in the morning or afternoon. Methods and Results The 5-Choice Serial Reaction-Time Task (5-CSRTT) was used to evaluate the cognitive performance of NK1R-/- mice and their wildtypes. After training, animals were tested using a long (LITI) and a variable (VITI) inter-trial interval: these tests were carried out with, and without, d-amphetamine pretreatment (0.3 or 1 mg/kg i.p.). NK1R-/- mice expressed greater omissions (inattentiveness), perseveration and premature responses (impulsivity) in the 5-CSRTT. In NK1R-/- mice, perseveration in the LITI was increased by injection-stress but reduced by d-amphetamine. Omissions by NK1R-/- mice in the VITI were unaffected by d-amphetamine, but premature responses were exacerbated by this psychostimulant. Omissions in the VITI were higher, overall, in the morning than the afternoon but, in the LITI, premature responses of NK1R-/- mice were higher in the afternoon than the morning. Conclusion In addition to locomotor hyperactivity, NK1R-/- mice express inattentiveness, perseveration and impulsivity in the 5-CSRTT, thereby matching core criteria for a model of ADHD. Because d-amphetamine reduced perseveration in NK1R-/- mice, this action does not require functional NK1R. However, the lack of any improvement of omissions and premature responses in NK1R-/- mice given d-amphetamine suggests that beneficial effects of this psychostimulant in other rodent models, and ADHD patients, need functional NK1R. Finally, our results reveal experimental variables (stimulus parameters, stress and time of day) that could influence translational studies

    General anesthesia does not have persistent effects on attention in rodents

    Get PDF
    Background: Studies in animals have shown that general anesthesia can cause persistent spatial memory impairment, but the influence of anesthetics on other cognitive functions is unclear. This study tested whether exposure to general anesthesia without surgery caused a persistent deficit in attention in rodents.Methods: To evaluate whether anesthesia has persistent effects on attention, rats were randomized to three groups. Group A was exposed for 2 h to isoflurane anesthesia, and tested the following seven days for attentional deficits. Group B was used as a control and received room air before attentional testing. Since there is some evidence that a subanesthetic dose of ketamine can improve cognition and reduce disorders of attention after surgery, rats in group C were exposed to isoflurane anesthesia in combination with a ketamine injection before cognitive assessment. Attention was measured in rats using the 5-Choice Serial Reaction Time Task, for which animals were trained to respond with a nose poke on a touchscreen to a brief, unpredictable visual stimulus in one of five possible grid locations to receive a food reward. Attention was analyzed as % accuracy, % omission, and premature responses.Results: Evaluating acute attention by comparing baseline values with data from the day after intervention did not reveal any differences in attentional measurements. No significant differences were seen in % accuracy, % omission, and premature responses for the three groups tested for 7 consecutive days.Conclusion: These data in healthy rodents suggest that general anesthesia without surgery has no persistent effect on attention and the addition of ketamine does not alter the outcome

    Environmental enrichment results in both brain connectivity efficiency and selective improvement in different behavioral tasks

    Get PDF
    Exposure to environmental enrichment (EE) has been a useful model for studying the effects of experience on brain plasticity, but to date, few is known about the impact of this condition on the brain functional networks that probably underlies the multiple behavioral improvements. Hence, we assessed the effect of an EE protocol in adult Wistar rats on the performance in several behavioral tasks testing different domains (Open field (OP): locomotor activity; Elevated-zero maze (EZM): anxiety-related behaviors; 5-choice serial reaction time task (5-CSRTT): attentional processes; 4-arm radial water maze (4-RAWM): spatial memory) in order to check its effectiveness in a wide range of functions. After this, we analyzed the functional brain connectivity underlying each experimental condition through cytochrome C oxidase (COx) histochemistry. Our EE protocol reduced both locomotor activity in the OP and anxiety-related behaviors in the EZM. On the other hand, enriched rats showed more accuracy in the 4-RAWM, whereas 5-CSRTT performance was not significantly ameliorated by EE condition. In relation to COx functional connectivity, we found that EE reduced the number of strong positive correlations both in basal and training conditions, suggesting a modulating effect on specific brain connections. Our results suggest that EE seems to have a selective effect on specific brain regions, such as prefrontal cortex and hippocampus, leading to a more efficient brain connectivity.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. PPIT.UMA.B1.2017/3

    Variable delay-to-signal: a fast paradigm for assessment of aspects of impulsivity in rats

    Get PDF
    Testing impulsive behavior in rodents is challenging and labor-intensive. We developed a new behavioral paradigm-the Variable Delay-to-Signal (VDS) test-that provides rapid and simultaneous assessment of response and decision impulsivity in rodents. Presentation of a light at variable delays signals the permission for action (nose poke) contingent with a reward. 2 blocks of 25 trials at 3 s delay flank a block of 70 trials in which light is presented with randomly selected 6 or 12 s delays. Exposure to such large delays boosts the rate of premature responses when the delay drops to 3 s in the final block, an effect that is blunted by an acute methamphetamine challenge and that correlates with the delay-discounting (DD) paradigm (choice impulsivity). Finally, as expected, treatment with the NMDA antagonist MK-801 caused a generalized response increase in all VDS blocks. The pharmacological validation, particularly with methamphetamine which has a well established dual effect on response and decision impulsivity, and the correlations between the impulsive behavior in the DD and VDS paradigms, suggests that the later is able to provide, in a single session, a multi-dimensional assessment of impulsive behavior.The work wa ssupported by a fellowship “SFRH/BPD/80118/2011” funded by FCT—Portuguese Foundation for Science and Technology and by FEDER funds through Operational program for competitivity factors—COMPETE and by national funds through FCT—Foundation for Science and Technology to projects PTDC/SAU-NEU/108557/2008 and PTDC/SAUNSC/111814/2009

    The Effects of Cariprazine and Aripiprazole on PCP-Induced Deficits on Attention Assessed in the 5-Choice Serial Reaction Time Task

    Get PDF
    Attentional processing deficits are a core feature of schizophrenia, likely contributing to the persistent functional and occupational disability observed in patients with schizophrenia. The pathophysiology of schizophrenia is hypothesized to involve dysregulation of NMDA receptor-mediated glutamate transmission, contributing to disruptions in normal dopamine transmission. Preclinical investigations often use NMDA receptor antagonists, such as phencyclidine (PCP), to induce cognitive disruptions relevant to schizophrenia. We sought to test the ability of partial dopamine D-2/D-3 agonists, cariprazine and aripiprazole, to attenuate PCP-induced deficits in attentional performance. The objective of this study is to determine whether systemic administration of cariprazine or aripiprazole attenuated 5-choice serial reaction time task (5-CSRTT) deficits induced by repeated exposure to PCP. We utilized a repeated PCP-treatment regimen (2 mg/kg, subcutaneous [s.c.], once daily for 5 days) in rats to induce deficits in the 5-CSRTT. Rats were pre-treated with cariprazine (0.03, 0.1, or 0.3 mg/kg, oral [p.o.]) or aripiprazole (1, 3, or 10 mg/kg, p.o.) to determine whether they prevented PCP-induced deficits in the 5-CSRTT performance. PCP treatment increased inappropriate responding in the 5-CSRTT, elevating incorrect, premature, and timeout responses. Cariprazine treatment reduced PCP-induced increases in inappropriate responding. However, at higher doses, cariprazine produced non-specific response suppression, confounding interpretation of the attenuated PCP-induced deficits. Aripiprazole treatment also attenuated PCP-induced deficits; however, unlike cariprazine treatment, aripiprazole reduced correct responding and increased omissions. Cariprazine and aripiprazole both demonstrated potential in attenuating PCP-induced deficits in the 5-CSRTT performance. While both compounds produced non-specific response suppression, these effects were absent when 0.03 mg/kg cariprazine was administered

    Prefrontal Parvalbumin Neurons in Control of Attention

    Get PDF
    SummaryWhile signatures of attention have been extensively studied in sensory systems, the neural sources and computations responsible for top-down control of attention are largely unknown. Using chronic recordings in mice, we found that fast-spiking parvalbumin (FS-PV) interneurons in medial prefrontal cortex (mPFC) uniformly show increased and sustained firing during goal-driven attentional processing, correlating to the level of attention. Elevated activity of FS-PV neurons on the timescale of seconds predicted successful execution of behavior. Successful allocation of attention was characterized by strong synchronization of FS-PV neurons, increased gamma oscillations, and phase locking of pyramidal firing. Phase-locked pyramidal neurons showed gamma-phase-dependent rate modulation during successful attentional processing. Optogenetic silencing of FS-PV neurons deteriorated attentional processing, while optogenetic synchronization of FS-PV neurons at gamma frequencies had pro-cognitive effects and improved goal-directed behavior. FS-PV neurons thus act as a functional unit coordinating the activity in the local mPFC circuit during goal-driven attentional processing

    PERFORMANCE OF TRANSGENIC TgTau-P301L MICE IN A 5-CHOICE SERIAL REACTION TIME TASK (5-CSRTT) AS A MODEL OF ALZHEIMER’S DISEASE

    Get PDF
    Alzheimer’s disease is increasing to epidemic levels with an estimated 36 million people affected worldwide (Wimo 2010). The aetiology of the disease is not known, which is hindering the progression of the treatment. This study is a longitudinal investigation into the performance of TgTauP301L mice as an animal model of Alzheimer’s disease on the computer automated touchscreen 5- choice serial reaction time task (5-CSRTT). TgTauP301L mice have a single tau mutation in the P301L gene and develop the tau pathology that represents the observed tauopathy in patients with Alzheimer’s disease. The aim of the investigation is to observe if tau pathology in the TgTauP301L mice causes a cognitive impairment in attention and executive function and at what stage this can be identified by the 5-CSRTT task. This will establish if the animals can be used as a therapeutic model for pre-clinical drug trials and help to identify an early indicator and intervention point in patients with Alzheimer’s disease. The animals have previously been studied at 5-months and no differences between performances of the TgTauP301L mice and wild type mice were found (unpublished data). This study measured the performance of the animals at 7- months which is when the tauopathy begins to develop in TgTauP301L mice (Murakami 2005). The results of this study showed that there was no deficit in the performance of the TgTauP301L compared to the wild type mice and there had been no change in the animals’ performance compared to at 5-months. The animals will be retested at 12-months once the pathology has extensively spread to see if the tauopathy causes a deficit in performance
    corecore