14 research outputs found

    Beyond Model-Checking CSL for QBDs: Resets, Batches and Rewards

    Get PDF
    We propose and discuss a number of extensions to quasi-birth-death models (QBDs) for which CSL model checking is still possible, thus extending our recent work on CSL model checking of QBDs. We then equip the QBDs with rewards, and discuss algorithms and open research issues for model checking CSRL for QBDs with rewards

    A uniformization-based algorithm for model checking the CSL until operator on labeled queueing networks

    Get PDF
    We present a model checking procedure for the CSL until operator on the CTMCs that underlie Jackson queueing networks. The key issue lies in the fact that the underlying CTMC is infinite in as many dimension as there are queues in the JQN. We need to compute the transient state probabilities for all goal states and for all possible starting states. However, for these transient probabilities no computational procedures are readily available. The contribution of this paper is the proposal of a new uniformization-based approach to compute the transient state probabilities. Furthermore, we show how the highly structured state space of JQNs allows us to compute the possible infinite satisfaction set for until formulas. A case study on an e-business site shows the feasibility of our approach

    A versatile infinite-state Markov reward model to study bottlenecks in 2-hop ad hoc networks

    Get PDF
    In a 2-hop IEEE 801.11-based wireless LAN, the distributed coordination function (DCF) tends to equally share the available capacity among the contending stations. Recently alternative capacity sharing strategies have been made possible. We propose a versatile infinite-state Markov reward model to study the bottleneck node in a 2-hop IEEE 801.11-based ad hoc network for different adaptive capacity sharing strategies. We use infinite-state stochastic Petri nets (iSPNs) to specify our model, from which the underlying QBD-type Markov-reward models are automatically derived. The impact of the different capacity sharing strategies is analyzed by CSRL model checking of the underlying infinite-state QBD, for which we provide new techniques. Our modeling approach helps in deciding under which circumstances which adaptive capacity sharing strategy is most appropriate

    Quasi-Birth-Death Processes, Tree-Like QBDs, Probabilistic 1-Counter Automata, and Pushdown Systems

    Get PDF
    We begin by observing that (discrete-time) Quasi-Birth-Death Processes (QBDs) are equivalent, in a precise sense, to probabilistic 1-Counter Automata (p1CAs), and both Tree-Like QBDs (TL-QBDs) and Tree-Structured QBDs (TS-QBDs) are equivalent to both probabilistic Pushdown Systems (pPDSs) and Recursive Markov Chains (RMCs). We then proceed to exploit these connections to obtain a number of new algorithmic upper and lower bounds for central computational problems about these models. Our main result is this: for an arbitrary QBD, we can approximate its termination probabilities (i.e., its GG matrix) to within ii bits of precision (i.e., within additive error 1/2i1/2^i), in time polynomial in \underline{both} the encoding size of the QBD and in ii, in the unit-cost rational arithmetic RAM model of computation. Specifically, we show that a decomposed Newton's method can be used to achieve this. We emphasize that this bound is very different from the well-known ``linear/quadratic convergence'' of numerical analysis, known for QBDs and TL-QBDs, which typically gives no constructive bound in terms of the encoding size of the system being solved. In fact, we observe (based on recent results) that for the more general TL-QBDs such a polynomial upper bound on Newton's method fails badly. Our upper bound proof for QBDs combines several ingredients: a detailed analysis of the structure of 1-counter automata, an iterative application of a classic condition number bound for errors in linear systems, and a very recent constructive bound on the performance of Newton's method for strongly connected monotone systems of polynomial equations. We show that the quantitative termination decision problem for QBDs (namely, ``is Gu,v1/2G_{u,v} \geq 1/2?'') is at least as hard as long standing open problems in the complexity of exact numerical computation, specifically the square-root sum problem. On the other hand, it follows from our earlier results for RMCs that any non-trivial approximation of termination probabilities for TL-QBDs is sqrt-root-sum-hard

    Model Checking CSL for Markov Population Models

    Full text link
    Markov population models (MPMs) are a widely used modelling formalism in the area of computational biology and related areas. The semantics of a MPM is an infinite-state continuous-time Markov chain. In this paper, we use the established continuous stochastic logic (CSL) to express properties of Markov population models. This allows us to express important measures of biological systems, such as probabilistic reachability, survivability, oscillations, switching times between attractor regions, and various others. Because of the infinite state space, available analysis techniques only apply to a very restricted subset of CSL properties. We present a full algorithm for model checking CSL for MPMs, and provide experimental evidence showing that our method is effective.Comment: In Proceedings QAPL 2014, arXiv:1406.156

    Quasi-Birth-Death Processes, Tree-Like QBDs, Probabilistic 1-Counter Automata, and Pushdown Systems

    Get PDF
    We begin by observing that (discrete-time) Quasi-Birth-Death Processes (QBDs) are equivalent, in a precise sense, to probabilistic 1-Counter Automata (p1CAs), and both Tree-Like QBDs (TL-QBDs) and Tree-Structured QBDs (TS-QBDs) are equivalent to both probabilistic Pushdown Systems (pPDSs) and Recursive Markov Chains (RMCs). We then proceed to exploit these connections to obtain a number of new algorithmic upper and lower bounds for central computational problems about these models. Our main result is this: for an arbitrary QBD, we can approximate its termination probabilities (i.e., its GG matrix) to within ii bits of precision (i.e., within additive error 1/2i1/2^i), in time polynomial in \underline{both} the encoding size of the QBD and in ii, in the unit-cost rational arithmetic RAM model of computation. Specifically, we show that a decomposed Newton's method can be used to achieve this. We emphasize that this bound is very different from the well-known ``linear/quadratic convergence'' of numerical analysis, known for QBDs and TL-QBDs, which typically gives no constructive bound in terms of the encoding size of the system being solved. In fact, we observe (based on recent results) that for the more general TL-QBDs such a polynomial upper bound on Newton's method fails badly. Our upper bound proof for QBDs combines several ingredients: a detailed analysis of the structure of 1-counter automata, an iterative application of a classic condition number bound for errors in linear systems, and a very recent constructive bound on the performance of Newton's method for strongly connected monotone systems of polynomial equations. We show that the quantitative termination decision problem for QBDs (namely, ``is Gu,v1/2G_{u,v} \geq 1/2?'') is at least as hard as long standing open problems in the complexity of exact numerical computation, specifically the square-root sum problem. On the other hand, it follows from our earlier results for RMCs that any non-trivial approximation of termination probabilities for TL-QBDs is sqrt-root-sum-hard

    Quasi-Birth-Death Processes, Tree-Like QBDs, Probabilistic 1-Counter Automata and Pushdown Systems

    Get PDF
    to appear in QEST 2008We begin by observing that (discrete-time) Quasi-Birth-Death Processes (QBDs) are equivalent, in a precise sense, to (discrete-time) probabilistic 1-Counter Automata (p1CAs), and both Tree-Like QBDs (TL-QBDs) and Tree-Structured QBDs (TS-QBDs) are equivalent to both probabilistic Pushdown Systems (pPDSs) and Recursive Markov Chains (RMCs). We then proceed to exploit these connections to obtain a number of new algorithmic upper and lower bounds for central computational problems about these models. Our main result is this: for an arbitrary QBD (even a null-recurrent one), we can approximate its termination probabilities (i.e., its GG matrix) to within ii bits of precision (i.e., within additive error 1/2i1/2^i), in time polynomial in \underline{both} the encoding size of the QBD and in ii, in the unit-cost rational arithmetic RAM model of computation. Specifically, we show that a decomposed Newton's method can be used to achieve this. We emphasize that this bound is very different from the well-known ``linear/quadratic convergence'' of numerical analysis, known for QBDs and TL-QBDs, which typically gives no constructive bound in terms of the encoding size of the system being solved. In fact, we observe (based on recent results for pPDSs) that for the more general TL-QBDs this bound fails badly. Specifically, in the worst case Newton's method ``converges linearly'' to the termination probabilities for TL-QBDs, but requires exponentially many iterations in the encoding size of the TL-QBD to approximate these probabilities within any non-trivial constant error c<1c < 1. Our upper bound proof for QBDs combines several ingredients: a detailed analysis of the structure of 1-counter automata, an iterative application of a classic condition number bound for errors in linear systems, and a very recent constructive bound on the performance of Newton's method for monotone systems of polynomial equations

    Recursive Probabilistic Models: efficient analysis and implementation

    Get PDF
    This thesis examines Recursive Markov Chains (RMCs), their natural extensions and connection to other models. RMCs can model in a natural way probabilistic procedural programs and other systems that involve recursion and probability. An RMC is a set of ordinary finite state Markov Chains that are allowed to call each other recursively and it describes a potentially infinite, but countable, state ordinary Markov Chain. RMCs generalize in a precise sense several well studied probabilistic models in other domains such as natural language processing (Stochastic Context-Free Grammars), population dynamics (Multi-Type Branching Processes) and in queueing theory (Quasi-Birth-Death processes (QBDs)). In addition, RMCs can be extended to a controlled version called Recursive Markov Decision Processes (RMDPs) and also a game version referred to as Recursive (Simple) Stochastic Games (RSSGs). For analyzing RMCs, RMDPs, RSSGs we devised highly optimized numerical algorithms and implemented them in a tool called PReMo (Probabilistic Recursive Models analyzer). PReMo allows computation of the termination probability and expected termination time of RMCs and QBDs, and a restricted subset of RMDPs and RSSGs. The input models are described by the user in specifically designed simple input languages. Furthermore, in order to analyze the worst and best expected running time of probabilistic recursive programs we study models of RMDPs and RSSGs with positive rewards assigned to each of their transitions and provide new complexity upper and lower bounds of their analysis. We also establish some new connections between our models and models studied in queueing theory. Specifically, we show that (discrete time) QBDs can be described as a special subclass of RMCs and Tree-like QBDs, which are a generalization of QBDs, are equivalent to RMCs in a precise sense. We also prove that for a given QBD we can compute (in the unit cost RAM model) an approximation of its termination probabilities within i bits of precision in time polynomial in the size of the QBD and linear in i. Specifically, we show that we can do this using a decomposed Newton’s method
    corecore