5,408 research outputs found

    Technology for the Future: In-Space Technology Experiments Program, part 2

    Get PDF
    The purpose of the Office of Aeronautics and Space Technology (OAST) In-Space Technology Experiments Program In-STEP 1988 Workshop was to identify and prioritize technologies that are critical for future national space programs and require validation in the space environment, and review current NASA (In-Reach) and industry/ university (Out-Reach) experiments. A prioritized list of the critical technology needs was developed for the following eight disciplines: structures; environmental effects; power systems and thermal management; fluid management and propulsion systems; automation and robotics; sensors and information systems; in-space systems; and humans in space. This is part two of two parts and contains the critical technology presentations for the eight theme elements and a summary listing of critical space technology needs for each theme

    Modeling, system identification, and control of ASTREX

    Get PDF
    The modeling, system identification and controller design aspects of the ASTREX precision space structure are presented in this work. Modeling of ASTREX is performed using NASTRAN, TREETOPS and I-DEAS. The models generated range from simple linear time-invariant models to nonlinear models used for large angle simulations. Identification in both the time and frequency domains are presented. The experimental set up and the results from the identification experiments are included. Finally, controller design for ASTREX is presented. Simulation results using this optimal controller demonstrate the controller performance. Finally the future directions and plans for the facility are addressed

    Digest of celestial X-ray missions and experiments

    Get PDF
    Information on instruments, the platforms that carried them, and the data they gathered is presented. Instrument selection was confined to detectors operating in the 0.20 to 300 keV range. Included are brief descriptions of the spacecraft, experiment packages and missions. Cross-referenced indexes are provided for types of instruments, energy ranges, time spans covered, positional catalogs and observational catalogs. Data sets from these experiments (NSSDC) are described

    Closed-state inactivation involving an internal gate in Kv4.1 channels modulates pore blockade by intracellular quaternary ammonium ions.

    Get PDF
    Voltage-gated K(+) (Kv) channel activation depends on interactions between voltage sensors and an intracellular activation gate that controls access to a central pore cavity. Here, we hypothesize that this gate is additionally responsible for closed-state inactivation (CSI) in Kv4.x channels. These Kv channels undergo CSI by a mechanism that is still poorly understood. To test the hypothesis, we deduced the state of the Kv4.1 channel intracellular gate by exploiting the trap-door paradigm of pore blockade by internally applied quaternary ammonium (QA) ions exhibiting slow blocking kinetics and high-affinity for a blocking site. We found that inactivation gating seemingly traps benzyl-tributylammonium (bTBuA) when it enters the central pore cavity in the open state. However, bTBuA fails to block inactivated Kv4.1 channels, suggesting gated access involving an internal gate. In contrast, bTBuA blockade of a Shaker Kv channel that undergoes open-state P/C-type inactivation exhibits fast onset and recovery inconsistent with bTBuA trapping. Furthermore, the inactivated Shaker Kv channel is readily blocked by bTBuA. We conclude that Kv4.1 closed-state inactivation modulates pore blockade by QA ions in a manner that depends on the state of the internal activation gate

    Streamlined design and self reliant hardware for active control of precision space structures

    Get PDF
    Precision space structures may require active vibration control to satisfy critical performance requirements relating to line-of-sight pointing accuracy and the maintenance of precise, internal alignments. In order for vibration control concepts to become operational, it is necessary that their benefits be practically demonstrated in large scale ground-based experiments. A unique opportunity to carry out such demonstrations on a wide variety of experimental testbeds was provided by the NASA Control-Structure Integration (CSI) Guest Investigator (GI) Program. This report surveys the experimental results achieved by the Harris Corporation GI team on both Phases 1 and 2 of the program and provides a detailed description of Phase 2 activities. The Phase 1 results illustrated the effectiveness of active vibration control for space structures and demonstrated a systematic methodology for control design, implementation test. In Phase 2, this methodology was significantly streamlined to yield an on-site, single session design/test capability. Moreover, the Phase 2 research on adaptive neural control techniques made significant progress toward fully automated, self-reliant space structure control systems. As a further thrust toward productized, self-contained vibration control systems, the Harris Phase II activity concluded with experimental demonstration of new vibration isolation hardware suitable for a wide range of space-flight and ground-based commercial applications.The CSI GI Program Phase 1 activity was conducted under contract NASA1-18872, and the Phase 2 activity was conducted under NASA1-19372

    Design and implementation of robust decentralized control laws for the ACES structure at Marshall Space Flight Center

    Get PDF
    Many large space system concepts will require active vibration control to satisfy critical performance requirements such as line-of-sight accuracy. In order for these concepts to become operational it is imperative that the benefits of active vibration control be practically demonstrated in ground based experiments. The results of the experiment successfully demonstrate active vibration control for a flexible structure. The testbed is the Active Control Technique Evaluation for Spacecraft (ACES) structure at NASA Marshall Space Flight Center. The ACES structure is dynamically traceable to future space systems and especially allows the study of line-of-sight control issues

    Reciprocity Calibration for Massive MIMO: Proposal, Modeling and Validation

    Get PDF
    This paper presents a mutual coupling based calibration method for time-division-duplex massive MIMO systems, which enables downlink precoding based on uplink channel estimates. The entire calibration procedure is carried out solely at the base station (BS) side by sounding all BS antenna pairs. An Expectation-Maximization (EM) algorithm is derived, which processes the measured channels in order to estimate calibration coefficients. The EM algorithm outperforms current state-of-the-art narrow-band calibration schemes in a mean squared error (MSE) and sum-rate capacity sense. Like its predecessors, the EM algorithm is general in the sense that it is not only suitable to calibrate a co-located massive MIMO BS, but also very suitable for calibrating multiple BSs in distributed MIMO systems. The proposed method is validated with experimental evidence obtained from a massive MIMO testbed. In addition, we address the estimated narrow-band calibration coefficients as a stochastic process across frequency, and study the subspace of this process based on measurement data. With the insights of this study, we propose an estimator which exploits the structure of the process in order to reduce the calibration error across frequency. A model for the calibration error is also proposed based on the asymptotic properties of the estimator, and is validated with measurement results.Comment: Submitted to IEEE Transactions on Wireless Communications, 21/Feb/201
    corecore