2 research outputs found

    Dise帽o de un sistema de control para AGVs a utilizar en el marco de una emulaci贸n en un sistema de almacenamiento y recuperaci贸n autom谩tica (AS/RS)

    Get PDF
    En las 煤ltimas d茅cadas, los sistemas tecnol贸gicos han sido influyentes en la competitividad de las empresas. Estos sistemas redujeron el tiempo de ejecuci贸n. La log铆stica automatizada, espec铆ficamente en los sistemas de almacenamiento y recolecci贸n, ha brindado una ventaja de respuesta pronta al cliente, teniendo un mejor funcionamiento dentro de las tareas de una compa帽铆a. En la industria manufacturera moderna, el tiempo empleado en el transporte de material representa casi el 80-90 % del tiempo total de verificaci贸n, incurriendo en m谩s del 30 % del costo total del proceso. Por esta raz贸n, este trabajo propone el dise帽o de un sistema de control para AGVs a utilizar en el marco de una emulaci贸n en un sistema de almacenamiento y recuperaci贸n autom谩tica (AS/RS), que realiza la recolecci贸n de los paquetes de manera que optimiza la recolecci贸n de paquetes y de mismo modo minimice el tiempo de respuesta en casos de perturbaci贸n. Para la modelaci贸n, se emplear谩 una arquitectura de control basada en el paradigma multi-agentes, y ser谩 parametrizado con un modelo de decisi贸n predictivo-reactivo. Espec铆ficamente, se utilizar谩n una herramienta de optimizaci贸n para la programaci贸n de recolecci贸n, as铆 como una modelaci贸n de control reactiva para responder a posibles perturbaciones. Se considerar谩n diferentes escenarios para validar la respuesta del modelo ante cada situaci贸n, haciendo una emulaci贸n del proceso en un ambiente virtual.In recent decades, technological systems have played an influential role in companies' competitiveness. These systems have reduced execution time. Automated logistics, specifically in storage and collection systems, has provided customers with prompt responses, while having a better performance within the tasks of a company. In the modern manufacturing industry, the time spent on material transport represents almost 80-90% of the total time of verification, incurring more than 30% of the total cost of the process. For this reason, this paper proposes the design of a control system for AGVs to be used in the framework of an emulation in an automatic storage and retrieval system (AS/RS), which carries out the collection of packages in a way that optimizes their collection, concurring with minimization in the response time in cases of disturbance. For the emulation, a control architecture based on the multi-agent paradigm will be used, and it will be parameterized with a predictive-reactive decision model. Specifically, an optimization tool will be used for collection scheduling, as well as reactive control modeling to respond to possible disturbances. Different scenarios will be considered to validate the response of the model to each situation, emulating the process in a virtual environment.Ingeniero (a) IndustrialPregrad

    Task Assignment and Path Planning for Autonomous Mobile Robots in Stochastic Warehouse Systems

    Get PDF
    The material handling industry is in the middle of a transformation from manual operations to automation due to the rapid growth in e-commerce. Autonomous mobile robots (AMRs) are being widely implemented to replace manually operated forklifts in warehouse systems to fulfil large shipping demand, extend warehouse operating hours, and mitigate safety concerns. Two open questions in AMR management are task assignment and path planning. This dissertation addresses the task assignment and path planning (TAPP) problem for autonomous mobile robots (AMR) in a warehouse environment. The goals are to maximize system productivity by avoiding AMR traffic and reducing travel time. The first topic in this dissertation is the development of a discrete event simulation modeling framework that can be used to evaluate alternative traffic control rules, task assignment methods, and path planning algorithms. The second topic, Risk Interval Path Planning (RIPP), is an algorithm designed to avoid conflicts among AMRs considering uncertainties in robot motion. The third topic is a deep reinforcement learning (DRL) model that is developed to solve task assignment and path planning problems, simultaneously. Experimental results demonstrate the effectiveness of these methods in stochastic warehouse systems
    corecore