1,771 research outputs found

    DRIVER Technology Watch Report

    Get PDF
    This report is part of the Discovery Workpackage (WP4) and is the third report out of four deliverables. The objective of this report is to give an overview of the latest technical developments in the world of digital repositories, digital libraries and beyond, in order to serve as theoretical and practical input for the technical DRIVER developments, especially those focused on enhanced publications. This report consists of two main parts, one part focuses on interoperability standards for enhanced publications, the other part consists of three subchapters, which give a landscape picture of current and surfacing technologies and communities crucial to DRIVER. These three subchapters contain the GRID, CRIS and LTP communities and technologies. Every chapter contains a theoretical explanation, followed by case studies and the outcomes and opportunities for DRIVER in this field

    Research and Development Workstation Environment: the new class of Current Research Information Systems

    Get PDF
    Against the backdrop of the development of modern technologies in the field of scientific research the new class of Current Research Information Systems (CRIS) and related intelligent information technologies has arisen. It was called - Research and Development Workstation Environment (RDWE) - the comprehensive problem-oriented information systems for scientific research and development lifecycle support. The given paper describes design and development fundamentals of the RDWE class systems. The RDWE class system's generalized information model is represented in the article as a three-tuple composite web service that include: a set of atomic web services, each of them can be designed and developed as a microservice or a desktop application, that allows them to be used as an independent software separately; a set of functions, the functional filling-up of the Research and Development Workstation Environment; a subset of atomic web services that are required to implement function of composite web service. In accordance with the fundamental information model of the RDWE class the system for supporting research in the field of ontology engineering - the automated building of applied ontology in an arbitrary domain area, scientific and technical creativity - the automated preparation of application documents for patenting inventions in Ukraine was developed. It was called - Personal Research Information System. A distinctive feature of such systems is the possibility of their problematic orientation to various types of scientific activities by combining on a variety of functional services and adding new ones within the cloud integrated environment. The main results of our work are focused on enhancing the effectiveness of the scientist's research and development lifecycle in the arbitrary domain area.Comment: In English, 13 pages, 1 figure, 1 table, added references in Russian. Published. Prepared for special issue (UkrPROG 2018 conference) of the scientific journal "Problems of programming" (Founder: National Academy of Sciences of Ukraine, Institute of Software Systems of NAS Ukraine

    Analysing Scientific Collaborations of New Zealand Institutions using Scopus Bibliometric Data

    Full text link
    Scientific collaborations are among the main enablers of development in small national science systems. Although analysing scientific collaborations is a well-established subject in scientometrics, evaluations of scientific collaborations within a country remain speculative with studies based on a limited number of fields or using data too inadequate to be representative of collaborations at a national level. This study represents a unique view on the collaborative aspect of scientific activities in New Zealand. We perform a quantitative study based on all Scopus publications in all subjects for more than 1500 New Zealand institutions over a period of 6 years to generate an extensive mapping of scientific collaboration at a national level. The comparative results reveal the level of collaboration between New Zealand institutions and business enterprises, government institutions, higher education providers, and private not for profit organisations in 2010-2015. Constructing a collaboration network of institutions, we observe a power-law distribution indicating that a small number of New Zealand institutions account for a large proportion of national collaborations. Network centrality concepts are deployed to identify the most central institutions of the country in terms of collaboration. We also provide comparative results on 15 universities and Crown research institutes based on 27 subject classifications.Comment: 10 pages, 15 figures, accepted author copy with link to research data, Analysing Scientific Collaborations of New Zealand Institutions using Scopus Bibliometric Data. In Proceedings of ACSW 2018: Australasian Computer Science Week 2018, January 29-February 2, 2018, Brisbane, QLD, Australi

    Software Citation Implementation Challenges

    Get PDF
    The main output of the FORCE11 Software Citation working group (https://www.force11.org/group/software-citation-working-group) was a paper on software citation principles (https://doi.org/10.7717/peerj-cs.86) published in September 2016. This paper laid out a set of six high-level principles for software citation (importance, credit and attribution, unique identification, persistence, accessibility, and specificity) and discussed how they could be used to implement software citation in the scholarly community. In a series of talks and other activities, we have promoted software citation using these increasingly accepted principles. At the time the initial paper was published, we also provided guidance and examples on how to make software citable, though we now realize there are unresolved problems with that guidance. The purpose of this document is to provide an explanation of current issues impacting scholarly attribution of research software, organize updated implementation guidance, and identify where best practices and solutions are still needed

    Active Learning for Computationally Efficient Distribution of Binary Evolution Simulations

    Full text link
    Binary stars undergo a variety of interactions and evolutionary phases, critical for predicting and explaining observed properties. Binary population synthesis with full stellar-structure and evolution simulations are computationally expensive requiring a large number of mass-transfer sequences. The recently developed binary population synthesis code POSYDON incorporates grids of MESA binary star simulations which are then interpolated to model large-scale populations of massive binaries. The traditional method of computing a high-density rectilinear grid of simulations is not scalable for higher-dimension grids, accounting for a range of metallicities, rotation, and eccentricity. We present a new active learning algorithm, psy-cris, which uses machine learning in the data-gathering process to adaptively and iteratively select targeted simulations to run, resulting in a custom, high-performance training set. We test psy-cris on a toy problem and find the resulting training sets require fewer simulations for accurate classification and regression than either regular or randomly sampled grids. We further apply psy-cris to the target problem of building a dynamic grid of MESA simulations, and we demonstrate that, even without fine tuning, a simulation set of only 1/4\sim 1/4 the size of a rectilinear grid is sufficient to achieve the same classification accuracy. We anticipate further gains when algorithmic parameters are optimized for the targeted application. We find that optimizing for classification only may lead to performance losses in regression, and vice versa. Lowering the computational cost of producing grids will enable future versions of POSYDON to cover more input parameters while preserving interpolation accuracies.Comment: 20 pages (16 main text), 10 figures, submitted to Ap

    Building scalable digital library ingestion pipelines using microservices

    Get PDF
    CORE, a harvesting service offering access to millions of open access research papers from around the world, has shifted its harvesting process from following a monolithic approach to the adoption of a microservices infrastructure. In this paper, we explain how we rearranged and re-scheduled our old ingestion pipeline, present CORE's move to managing microservices and outline the tools we use in a new and optimised ingestion system. In addition, we discuss the ineffciencies of our old harvesting process, the advantages, and challenges of our new ingestion system and our future plans. We conclude that via the adoption of microservices architecture we managed to achieve a scalable and distributed system that would assist with CORE's future performance and evolution
    corecore