340 research outputs found

    An Optical Model for Translucent Volume Rendering and Its Implementation Using the Preintegrated Shear-Warp Algorithm

    Get PDF
    In order to efficiently and effectively reconstruct 3D medical images and clearly display the detailed information of inner structures and the inner hidden interfaces between different media, an Improved Volume Rendering Optical Model (IVROM) for medical translucent volume rendering and its implementation using the preintegrated Shear-Warp Volume Rendering algorithm are proposed in this paper, which can be readily applied on a commodity PC. Based on the classical absorption and emission model, effects of volumetric shadows and direct and indirect scattering are also considered in the proposed model IVROM. Moreover, the implementation of the Improved Translucent Volume Rendering Method (ITVRM) integrating the IVROM model, Shear-Warp and preintegrated volume rendering algorithm is described, in which the aliasing and staircase effects resulting from under-sampling in Shear-Warp, are avoided by the preintegrated volume rendering technique. This study demonstrates the superiority of the proposed method

    Real-time hybrid cutting with dynamic fluid visualization for virtual surgery

    Get PDF
    It is widely accepted that a reform in medical teaching must be made to meet today's high volume training requirements. Virtual simulation offers a potential method of providing such trainings and some current medical training simulations integrate haptic and visual feedback to enhance procedure learning. The purpose of this project is to explore the capability of Virtual Reality (VR) technology to develop a training simulator for surgical cutting and bleeding in a general surgery

    High performance computer simulated bronchoscopy with interactive navigation.

    Get PDF
    by Ping-Fu Fung.Thesis (M.Phil.)--Chinese University of Hong Kong, 1998.Includes bibliographical references (leaves 98-102).Abstract also in Chinese.Abstract --- p.ivAcknowledgements --- p.viChapter 1 --- Introduction --- p.1Chapter 1.1 --- Medical Visualization System --- p.4Chapter 1.1.1 --- Data Acquisition --- p.4Chapter 1.1.2 --- Computer-aided Medical Visualization --- p.5Chapter 1.1.3 --- Existing Systems --- p.6Chapter 1.2 --- Research Goal --- p.8Chapter 1.2.1 --- System Architecture --- p.9Chapter 1.3 --- Organization of this Thesis --- p.10Chapter 2 --- Volume Visualization --- p.11Chapter 2.1 --- Sampling Grid and Volume Representation --- p.11Chapter 2.2 --- Priori Work in Volume Rendering --- p.13Chapter 2.2.1 --- Surface VS Direct --- p.14Chapter 2.2.2 --- Image-order VS Object-order --- p.18Chapter 2.2.3 --- Orthogonal VS Perspective --- p.22Chapter 2.2.4 --- Hardware Acceleration VS Software Acceleration --- p.23Chapter 2.3 --- Chapter Summary --- p.29Chapter 3 --- IsoRegion Leaping Technique for Perspective Volume Rendering --- p.30Chapter 3.1 --- Compositing Projection in Direct Volume Rendering --- p.31Chapter 3.2 --- IsoRegion Leaping Acceleration --- p.34Chapter 3.2.1 --- IsoRegion Definition --- p.35Chapter 3.2.2 --- IsoRegion Construction --- p.37Chapter 3.2.3 --- IsoRegion Step Table --- p.38Chapter 3.2.4 --- Ray Traversal Scheme --- p.41Chapter 3.3 --- Experiment Result --- p.43Chapter 3.4 --- Improvement --- p.47Chapter 3.5 --- Chapter Summary --- p.48Chapter 4 --- Parallel Volume Rendering by Distributed Processing --- p.50Chapter 4.1 --- Multi-platform Loosely-coupled Parallel Environment Shell --- p.51Chapter 4.2 --- Distributed Rendering Pipeline (DRP) --- p.55Chapter 4.2.1 --- Network Architecture of a Loosely-Coupled System --- p.55Chapter 4.2.2 --- Data and Task Partitioning --- p.58Chapter 4.2.3 --- Communication Pattern and Analysis --- p.59Chapter 4.3 --- Load Balancing --- p.69Chapter 4.4 --- Heterogeneous Rendering --- p.72Chapter 4.5 --- Chapter Summary --- p.73Chapter 5 --- User Interface --- p.74Chapter 5.1 --- System Design --- p.75Chapter 5.2 --- 3D Pen Input Device --- p.76Chapter 5.3 --- Visualization Environment Integration --- p.77Chapter 5.4 --- User Interaction: Interactive Navigation --- p.78Chapter 5.4.1 --- Camera Model --- p.79Chapter 5.4.2 --- Zooming --- p.81Chapter 5.4.3 --- Image View --- p.82Chapter 5.4.4 --- User Control --- p.83Chapter 5.5 --- Chapter Summary --- p.87Chapter 6 --- Conclusion --- p.88Chapter 6.1 --- Final Summary --- p.88Chapter 6.2 --- Deficiency and Improvement --- p.89Chapter 6.3 --- Future Research Aspect --- p.91Appendix --- p.93Chapter A --- Common Error in Pre-multiplying Color and Opacity --- p.94Chapter B --- Binary Factorization of the Sample Composition Equation --- p.9

    Efficient rendering of large 3-D and 4-D scalar fields

    Get PDF
    Rendering volumetric data, as a compute/communication intensive and highly parallel application, represents the characteristics of future workloads for desktop computers. Interactively rendering volumetric data has been a challenging problem due to its high computational and communication requirements. With the consistent trend toward high resolution data, it has remained a difficult problem despite the continuous increase in processing power, because of the increasing performance gap between computation and communication. On the other hand, the new multi-core architecture trend in computational units in PC, which can be characterized by parallelism and heterogeneity, provides both opportunities and challenges. While the new on-chip parallel architectures offer opportunities for extremely high performance, widespread use of those parallel processors requires extensive changes in previous algorithms to take advantage of the new architectures. In this dissertation, we develop new methods and techniques to support interactive rendering of large volumetric data. In particular, we present a novel method to layout data on disk for efficiently performing an out-of-core axis-aligned slicing of large multidimensional scalar fields. We also present a new method to efficiently build an out-of-core indexing structure for n-dimensional volumetric data. Then, we describe a streaming model for efficiently implementing volume ray casting on a heterogeneous compute resource environment. We describe how we implement the model on SONY/TOSHIBA/IBM Cell Broadband Engine and on NVIDIA CUDA architecture. Our results show that our out-of-core techniques significantly reduce the communication bandwidth requirements and that our streaming model very effectively makes use of the strengths of those heterogeneous parallel compute resource environment for volume rendering. In all cases, we achieve scalability and load balancing, while hiding memory latency

    Fast Volume Rendering and Deformation Algorithms

    Full text link
    Volume rendering is a technique for simultaneous visualization of surfaces and inner structures of objects. However, the huge number of volume primitives (voxels) in a volume, leads to high computational cost. In this dissertation I developed two algorithms for the acceleration of volume rendering and volume deformation. The first algorithm accelerates the ray casting of volume. Previous ray casting acceleration techniques like space-leaping and early-ray-termination are only efficient when most voxels in a volume are either opaque or transparent. When many voxels are semi-transparent, the rendering time will increase considerably. Our new algorithm improves the performance of ray casting of semi-transparently mapped volumes by exploiting the opacity coherency in object space, leading to a speedup factor between 1.90 and 3.49 in rendering semi-transparent volumes. The acceleration is realized with the help of pre-computed coherency distances. We developed an efficient algorithm to encode the coherency information, which requires less than 12 seconds for data sets with about 8 million voxels. The second algorithm is for volume deformation. Unlike the traditional methods, our method incorporates the two stages of volume deformation, i.e. deformation and rendering, into a unified process. Instead to deform each voxel to generate an intermediate deformed volume, the algorithm follows inversely deformed rays to generate the desired deformation. The calculations and memory for generating the intermediate volume are thus saved. The deformation continuity is achieved by adaptive ray division which matches the amplitude of local deformation. We proposed approaches for shading and opacit adjustment which guarantee the visual plausibility of deformation results. We achieve an additional deformation speedup factor of 2.34~6.58 by incorporating early-ray-termination, space-leaping and the coherency acceleration technique in the new deformation algorithm

    Computational requirements of the virtual patient

    Get PDF
    Medical visualization in a hospital can be used to aid training, diagnosis, and pre- and intra-operative planning. In such an application, a virtual representation of a patient is needed that is interactive, can be viewed in three dimensions (3D), and simulates physiological processes that change over time. This paper highlights some of the computational challenges of implementing a real time simulation of a virtual patient, when accuracy can be traded-off against speed. Illustrations are provided using projects from our research based on Grid-based visualization, through to use of the Graphics Processing Unit (GPU)

    Accurate geometry reconstruction of vascular structures using implicit splines

    Get PDF
    3-D visualization of blood vessel from standard medical datasets (e.g. CT or MRI) play an important role in many clinical situations, including the diagnosis of vessel stenosis, virtual angioscopy, vascular surgery planning and computer aided vascular surgery. However, unlike other human organs, the vasculature system is a very complex network of vessel, which makes it a very challenging task to perform its 3-D visualization. Conventional techniques of medical volume data visualization are in general not well-suited for the above-mentioned tasks. This problem can be solved by reconstructing vascular geometry. Although various methods have been proposed for reconstructing vascular structures, most of these approaches are model-based, and are usually too ideal to correctly represent the actual variation presented by the cross-sections of a vascular structure. In addition, the underlying shape is usually expressed as polygonal meshes or in parametric forms, which is very inconvenient for implementing ramification of branching. As a result, the reconstructed geometries are not suitable for computer aided diagnosis and computer guided minimally invasive vascular surgery. In this research, we develop a set of techniques associated with the geometry reconstruction of vasculatures, including segmentation, modelling, reconstruction, exploration and rendering of vascular structures. The reconstructed geometry can not only help to greatly enhance the visual quality of 3-D vascular structures, but also provide an actual geometric representation of vasculatures, which can provide various benefits. The key findings of this research are as follows: 1. A localized hybrid level-set method of segmentation has been developed to extract the vascular structures from 3-D medical datasets. 2. A skeleton-based implicit modelling technique has been proposed and applied to the reconstruction of vasculatures, which can achieve an accurate geometric reconstruction of the vascular structures as implicit surfaces in an analytical form. 3. An accelerating technique using modern GPU (Graphics Processing Unit) is devised and applied to rendering the implicitly represented vasculatures. 4. The implicitly modelled vasculature is investigated for the application of virtual angioscopy
    corecore