61 research outputs found

    Robust Multi-target Tracking with Bootstrapped-GLMB Filter

    Get PDF
    This dissertation presents novel multi-target tracking algorithms that obviate the need for prior knowledge of system parameters such as clutter rate, detection probabilities, and birth models. Information on these parameters is unknown but important to tracking performance. The proposed algorithms exploit the advantages of existing RFS trackers and filters by bootstrapping them. This configuration inherits the efficiency of tracking target trajectories from the RFS trackers and low complexity in parameter estimation from the RFS filters

    Robust Multi-Object Tracking: A Labeled Random Finite Set Approach

    Get PDF
    The labeled random finite set based generalized multi-Bernoulli filter is a tractable analytic solution for the multi-object tracking problem. The robustness of this filter is dependent on certain knowledge regarding the multi-object system being available to the filter. This dissertation presents techniques for robust tracking, constructed upon the labeled random finite set framework, where complete information regarding the system is unavailable

    Information theoretic approach to robust multi-Bernoulli sensor control

    Full text link
    A novel sensor control solution is presented, formulated within a Multi-Bernoulli-based multi-target tracking framework. The proposed method is especially designed for the general multi-target tracking case, where no prior knowledge of the clutter distribution or the probability of detection profile are available. In an information theoretic approach, our method makes use of R\`{e}nyi divergence as the reward function to be maximized for finding the optimal sensor control command at each step. We devise a Monte Carlo sampling method for computation of the reward. Simulation results demonstrate successful performance of the proposed method in a challenging scenario involving five targets maneuvering in a relatively uncertain space with unknown distance-dependent clutter rate and probability of detection

    A CPHD Filter for Tracking With Spawning Models

    Get PDF
    In some applications of multi-target tracking, appearing targets are suitably modeled as spawning from existing targets. However, in the original formulation of the cardinalized probability hypothesis density (CPHD) filter, this type of model is not supported; instead appearing targets are modeled by spontaneous birth only. In this paper we derive the necessary equations for a CPHD filter for the case when the process model also includes target spawning. For this generalized filter, the cardinality prediction formula might become computationally intractable for general spawning models. However, when the cardinality distribution of the spawning targets is either Bernoulli or Poisson, we derive expressions that are practical and computationally efficient. Simulations show that the proposed filter responds faster to a change in target number due to spawned targets than the original CPHD filter. In addition, the performance of the filter, considering the optimal subpattern assignment (OSPA), is improved when having an explicit spawning model

    Multi-Bernoulli Sensor-Control via Minimization of Expected Estimation Errors

    Full text link
    This paper presents a sensor-control method for choosing the best next state of the sensor(s), that provide(s) accurate estimation results in a multi-target tracking application. The proposed solution is formulated for a multi-Bernoulli filter and works via minimization of a new estimation error-based cost function. Simulation results demonstrate that the proposed method can outperform the state-of-the-art methods in terms of computation time and robustness to clutter while delivering similar accuracy

    Sensor Control for Multi-Object Tracking Using Labeled Multi-Bernoulli Filter

    Full text link
    The recently developed labeled multi-Bernoulli (LMB) filter uses better approximations in its update step, compared to the unlabeled multi-Bernoulli filters, and more importantly, it provides us with not only the estimates for the number of targets and their states, but also with labels for existing tracks. This paper presents a novel sensor-control method to be used for optimal multi-target tracking within the LMB filter. The proposed method uses a task-driven cost function in which both the state estimation errors and cardinality estimation errors are taken into consideration. Simulation results demonstrate that the proposed method can successfully guide a mobile sensor in a challenging multi-target tracking scenario
    • …
    corecore