405 research outputs found

    Exploration Laboratory Analysis - ARC

    Get PDF
    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability (ExMC) risk, Risk of Inability to Adequately Treat an Ill or Injured Crew Member, and ExMC Gap 4.05: Lack of minimally invasive in-flight laboratory capabilities with limited consumables required for diagnosing identified Exploration Medical Conditions. To mitigate this risk, the availability of inflight laboratory analysis instrumentation has been identified as an essential capability in future exploration missions. Mission architecture poses constraints on equipment and procedures that will be available to treat evidence-based medical conditions according to the Space Medicine Exploration Medical Conditions List (SMEMCL). The SMEMCL provided diagnosis and treatment for the evidence-based medical conditions and hence, a basis for developing ELA functional requirements

    Open source integration engines for safer hospitals. A case study

    Get PDF
    In the speech it will be presented a case study of a software integration engine based on open-source tools running in the biggest hospital of Sardinia, one of Italian regions: the implemented application is focused on ADT, Radiology and Laboratory data exchange. The general objective of the project is to enforce patient security through the use of integrated software products, the availability of homogeneous clinical data ad an easier access to medical records for administrative and medical personnel involved in the entire care process. The main objective is to drastically reduce human errors in repetitive processes through the use of modern integration engines and international standards.2011-05-12Budapest, HungaryWorld of Health IT Conference 201

    Prognostics and Health Management (PHM) for astronauts: a collaboration project on the International Space Station

    Get PDF
    Long-duration missions bring numerous risks that must be understood and mitigated in order to keep astronauts healthy, rather than treat a diagnosed health disorder. Having a limited medical support from mission control center on space exploration missions, crew members need a personal health-tracking tool to predict and assess his/her health risks if no preventive measures are taken. This paper refines a concept employing technologies from Prognostics and Health Management (PHM) for systems, namely real-time health monitoring and condition-based health maintenance with predictive diagnostics capabilities. Mapping particular PHM-based solutions to some Human Health and Performance (HH&P) technology candidates, namely by NASA designation, the Autonomous Medical Decision technology and the Integrated Biomedical Informatics technology, this conceptual paper emphasize key points that make the concept different from that of both current conventional medicine and telemedicine including space medicine. The primary benefit of the technologies development for the HH&P domain is the ability to successfully achieve affordable human space missions to Low Earth Orbit (LEO) and beyond. Space missions on the International Space Station (ISS) program directly contribute to the knowledge base and advancements in the HH&P domain, thanks to continued operations on the ISS, a unique human-tended test platform and the only test bed within the space environment. The concept is to be validated on the ISS, the only “test bed” on which to prepare for future manned exploration missions. The paper authors believe that early self-diagnostic coupled with autonomous identification of proper preventive responses on negative trends are critical in order to keep astronauts healthy

    A Case Study of the Military Utility of Telemedicine

    Get PDF
    This paper is designed to relate the rationale used by the Department of Defense to determine the military utility of the Joint Medical Operations – Telemedicine Advanced Concept Technology Demonstration (JMO-T ACTD). The paper also develops Critical Operational Issues (COI) and Measures of Effectiveness (MOE) as methodologies for investigating the military utility of telemedicine. In order to meet increasing global crises, the U.S. military must find ways to more effectively manage manpower and time. Joint Medical Operations – Telemedicine (JMO-T) has been developed by the Department of Defense (DOD) to collect and transmit near-real-time, far-forward medical data and to assess how this improved capability enhances medical management of the battlespace. JMO-T has been successful in resolving uncertain organizational and technological military deficiencies and in improving medical communications and information management. The deployable, mobile Telemedicine Teams are the centerpieces of JMO-T. These teams have the capability of inserting essential networking and communications capabilities into austere theaters and establishing an immediate means for enhancing health protection, collaborative planning, situational awareness, and strategic decision-making

    WEIRD – Real Use Cases and Applications for the WiMAX Technology

    Get PDF
    IEEE 802.16/WiMAX is one of the most promising technologies for Broadband Wireless Access, both for fixed and mobile use. This paper presents the structure of some testbeds, set up in the framework of the European project WEIRD, about novel applications running on top of a WiMAX-based end-to-end architecture. The presented testbeds are based on real use case scenarios, including monitoring of impervious areas, tele-medicine and tele-hospitalization

    Assessment of ambient assisted living systems for patients with mild cognitive impairment

    Get PDF
    According to the World Health Organization, about 50 million people worldwide suffer from dementia. Ten million new cases added every year. Mild Cognitive Impairment (MCI) affects more than 15% of the population aged 65. Technological solutions, such as smart home technology with ubiquitous computing devices, 24/7 telemedical observation and support can alleviate the growing problem and lower pressure on the healthcare system. This approach is also preferable for homecare patients in distant and rural areas. MCI patients are mostly home-based. Ambient Assisted Living (AAL) systems provide tools for automatic registration of vital signs and other medically and socially important information. AAL system for MCI patients is a logical answer to the problem. At the same time, many of the proposed AAL systems are proprietary, technically complicated and have a high price tag for implementation and service. Also, some proposed technical solutions not entirely reflect the opinion of healthcare stakeholders. The current study was proposed as a way to bridge the possible differences in the positions. An online anonymous questionnaire for healthcare professionals was created to prove or disprove the number of interconnected hypotheses about the necessity and feasibility of AAL system for MCI patients. The main focus was made on the hypotheses: "There is necessity of AAL systems for the healthcare" and "AAL systems are capable of providing assistance for patients with Mild Cognitive Impairment". The questionnaire was presented to more than three hundred potential respondents. Around a hundred and twenty agreed to fill it, and sixty completed the whole questionnaire. Results were analyzed to produce some directions guideline for future technical applications of AAL systems for MCI patients and future research. Descriptive statistics show support for the implementation of general AAL and variants for MCI patients. Comparative analysis of ordinal data for specific groups of respondents is done with help of non-parametric tests. Mann–Whitney–Wilcoxon test and Kruskal-Wallis test are applied. Table questions results are analyzed with chisquare for frequency tables. Group analysis demonstrated relative positive uniformity in of responses in the support of AAL of MCI patients.Segundo a Organização Mundial da Saúde, cerca de 50 milhões de pessoas em todo o mundo sofrem de demência. Dez milhões de novos casos adicionados a cada ano. O comprometimento cognitivo leve (MCI) afeta mais de 15% da população com 65 anos. Soluções tecnológicas, como tecnologia de casa inteligente com dispositivos de computação onipresentes, observação e suporte telemédico 24 horas por dia, 7 dias por semana, podem aliviar o problema crescente e diminuir a pressão sobre o sistema de saúde. Essa abordagem também é preferível para pacientes de cuidados domiciliares em áreas distantes e rurais. Os pacientes com CCL são, em sua maioria, domiciliares. Os sistemas Ambient Assisted Living (AAL) fornecem ferramentas para registro automático de sinais vitais e outras informações médicas e socialmente importantes. O sistema AAL para pacientes com MCI é uma resposta lógica para o problema. Ao mesmo tempo, muitos dos sistemas AAL propostos são proprietários, tecnicamente complicados e têm um alto preço para implementação e serviço. Além disso, algumas soluções técnicas propostas não refletem inteiramente a opinião das partes interessadas na área da saúde. O presente estudo foi proposto como forma de colmatar as possíveis diferenças nas posições. Um questionário anônimo online para profissionais de saúde foi criado para comprovar ou refutar o número de hipóteses interligadas sobre a necessidade e viabilidade do sistema AAL para pacientes com CCL. O foco principal foi feito nas hipóteses: "Há necessidade de sistemas de AAL para a saúde" e "Os sistemas de AAL são capazes de prestar assistência a pacientes com Comprometimento Cognitivo Leve". O questionário foi apresentado a mais de trezentos respondentes potenciais. Cerca de cento e vinte concordaram em preenchê-lo e sessenta preencheram todo o questionário. Os resultados foram analisados para produzir algumas diretrizes para futuras aplicações técnicas de sistemas AAL para pacientes com MCI e pesquisas futuras. Estatísticas descritivas mostram suporte para a implementação de AAL geral e variantes para pacientes com CCL. A análise comparativa de dados ordinais para grupos específicos de respondentes é feita com a ajuda de testes não paramétricos. Aplicam-se os testes de Mann-Whitney-Wilcoxon e Kruskal-Wallis. Os resultados das questões da tabela são analisados com qui-quadrado para tabelas de frequência. A análise do grupo demonstrou relativa uniformidade positiva nas respostas no suporte de AAL de pacientes com CCL.Selon l'Organisation mondiale de la santé, environ 50 millions de personnes dans le monde souffrent de démence. Dix millions de nouveaux cas ajoutés chaque année. Les troubles cognitifs légers (MCI) touchent plus de 15 % de la population âgée de 65 ans. Les solutions technologiques, telles que la technologie de la maison intelligente avec des appareils informatiques omniprésents, l'observation et le soutien télémédicaux 24 heures sur 24, 7 jours sur 7, peuvent atténuer le problème croissant et réduire la pression sur le système de santé. Cette approche est également préférable pour les patients en soins à domicile dans les régions éloignées et rurales. Les patients MCI sont pour la plupart à domicile. Les systèmes Ambient Assisted Living (AAL) fournissent des outils pour l'enregistrement automatique des signes vitaux et d'autres informations importantes sur le plan médical et social. Le système AAL pour les patients MCI est une réponse logique au problème. Dans le même temps, bon nombre des systèmes AAL proposés sont propriétaires, techniquement compliqués et ont un prix élevé pour la mise en oeuvre et le service. De plus, certaines solutions techniques proposées ne reflètent pas entièrement l'opinion des acteurs de santé. L'étude actuelle a été proposée comme un moyen de combler les différences possible dans les positions. Un questionnaire anonyme en ligne destiné aux professionnels de la santé a été créé pour prouver ou réfuter le nombre d'hypothèses interconnectées sur la nécessité et la faisabilité du système AAL pour les patients MCI. L'accent a été mis principalement sur les hypothèses: "Il existe une nécessité de systèmes AAL pour les soins de santé" et "Les systèmes AAL sont capables de fournir une assistance aux patients atteints de troubles cognitifs légers". Le questionnaire a été présenté à plus de trois cents répondants potentiels. Environ cent vingt ont accepté de le remplir, et soixante ont rempli tout le questionnaire. Les résultats ont été analysés pour produire des lignes directrices pour les futures applications techniques des systèmes AAL pour les patients MCI et l'avenir de la recherche. Les statistiques descriptives montrent un soutien à la mise en oeuvre de l'AAL général et des variantes pour les patients MCI. L'analyse comparative des données ordinales pour des groupes spécifiques de répondants est effectuée à l'aide de tests non paramétriques. Le test de Mann-Whitney-Wilcoxon et le test de Kruskal-Wallis sont appliqués. Les résultats des questions de tableau sont analysés avec le chi carré pour les tableaux de fréquence. L'analyse de groupe a démontré une uniformité positive relative dans les réponses à l'appui de l'AAL des patients MCI

    FIT FOR USE ASSESSMENT OF BIOZEN AS A BIOMETRIC SENSOR CONCENTRATOR FOR REMOTE PATIENT MONITORING

    Get PDF
    In recent years, COVID-19 highlighted the importance of virtual health solutions with regard to improving patient health and conserving valuable hospital resources. Currently, the Defense Health Agency (DHA) does not own a remote patient-monitoring solution and relies on external commercial entities to provide the application and services. This could potentially lead to the DHA not retaining complete data ownership when patient data would reside on or traverse through commercial remote patient-monitoring solutions. This thesis evaluates BioZen, a DHA-owned biomedical sensor concentrator designed to run on a mobile phone, as a remote patient-monitoring tool. From this analysis, several key measures of effectiveness and measures of performance for remote patient-monitoring tools are identified and operationalized to measure the overall value BioZen brings to the DHA. Based on this research, it was found that the current build of BioZen, 2.0.0, is unable to meet any of the measures outlined in the study as a remote patient-monitoring tool. A future build of BioZen, or any remote patient-monitoring tool, could then be assessed using the measures of effectiveness and measures of performance within this study to determine the overall value brought to the DHA.Defense Health Agency, 7700 Arlington Boulevard, Falls Church, VA 22042Captain, United States ArmyLieutenant, United States NavyApproved for public release. Distribution is unlimited

    PACS for the Developing World

    Get PDF
    Digital imaging is now firmly ensconced in the developed world. Its widespread adoption has enabled instant access to images, remote viewing, remote consultation, and the end of lost or misplaced film. Unfortunately, the current paradigm of Picture Archiving and Communication System (PACS), with advanced technology inseparable from high complexity, high purchase costs, and high maintenance costs, is not suited for the low-income developing world. Like the simple, easy to repair, 1950’s American cars still running on the streets of Havana, the developing world requires a PACS (DW-PACS) that can perform basic functions and survive in a limited-resource environment. The purpose of this article is to more fully describe this concept and to present a blueprint for PACS tailored to the needs and resources of the developing world. This framework should assist both users looking for a vendor-supplied or open-source solutions and developers seeking to address the needs of this emerging market
    corecore