7,298 research outputs found

    Assurance Benefits of ISO 26262 compliant Microcontrollers for safety-critical Avionics

    Full text link
    The usage of complex Microcontroller Units (MCUs) in avionic systems constitutes a challenge in assuring their safety. They are not developed according to the development requirements accepted by the aerospace industry. These Commercial off-the-shelf (COTS) hardware components usually target other domains like the telecommunication branch. In the last years MCUs developed in compliance to the ISO 26262 have been released on the market for safety-related automotive applications. The avionic assurance process could profit from these safety MCUs. In this paper we present evaluation results based on the current assurance practice that demonstrates expected assurance activities benefit from ISO 26262 compliant MCUs.Comment: Submitted to SafeComp 2018: http://www.es.mdh.se/safecomp2018

    The Knowledge Application and Utilization Framework Applied to Defense COTS: A Research Synthesis for Outsourced Innovation

    Get PDF
    Purpose -- Militaries of developing nations face increasing budget pressures, high operations tempo, a blitzing pace of technology, and adversaries that often meet or beat government capabilities using commercial off-the-shelf (COTS) technologies. The adoption of COTS products into defense acquisitions has been offered to help meet these challenges by essentially outsourcing new product development and innovation. This research summarizes extant research to develop a framework for managing the innovative and knowledge flows. Design/Methodology/Approach – A literature review of 62 sources was conducted with the objectives of identifying antecedents (barriers and facilitators) and consequences of COTS adoption. Findings – The DoD COTS literature predominantly consists of industry case studies, and there’s a strong need for further academically rigorous study. Extant rigorous research implicates the importance of the role of knowledge management to government innovative thinking that relies heavily on commercial suppliers. Research Limitations/Implications – Extant academically rigorous studies tend to depend on measures derived from work in information systems research, relying on user satisfaction as the outcome. Our findings indicate that user satisfaction has no relationship to COTS success; technically complex governmental purchases may be too distant from users or may have socio-economic goals that supersede user satisfaction. The knowledge acquisition and utilization framework worked well to explain the innovative process in COTS. Practical Implications – Where past research in the commercial context found technological knowledge to outweigh market knowledge in terms of importance, our research found the opposite. Managers either in government or marketing to government should be aware of the importance of market knowledge for defense COTS innovation, especially for commercial companies that work as system integrators. Originality/Value – From the literature emerged a framework of COTS product usage and a scale to measure COTS product appropriateness that should help to guide COTS product adoption decisions and to help manage COTS product implementations ex post

    Small Satellite Industrial Base Study: Foundational Findings

    Get PDF
    This report documents findings from a Small Satellite (SmallSat) Industrial Base Study conducted by The Aerospace Corporation between November 2018 and September 2019. The primary objectives of this study were a) to gain a better understanding of the SmallSat communitys technical practices, engineering approaches, requirements flow-downs, and common processes and b) identify insights and recommendations for how the government can further capitalize on the strengths and capabilities of SmallSat offerings. In the context of this study, SmallSats are understood to weigh no more than 500 kg, as described in State of the Art Small Spacecraft Technology, NASA/TP-2018- 220027, December 2018. CubeSats were excluded from this study to avoid overlap and duplication of recently completed work or other studies already under way. The team also touched on differences between traditional space-grade and the emerging mid-grade and other non-space, alternate-grade EEEE (electrical, electronic, electromechanical, electro-optical) piece part categories. Finally, the participants sought to understand the potential effects of increased use of alternate-grade parts on the traditional space-grade industrial base. The study team was keenly aware that there are missions for which non-space grade parts currently are infeasible for the foreseeable future. National security, long-duration and high-reliability missions intolerant of risk are a few examples. The team sought to identify benefits of alternative parts and approaches that can be harnessed by the government to achieve greater efficiencies and capabilities without impacting mission success

    Safety Engineering with COTS components

    Get PDF
    Safety-critical systems are becoming more widespread, complex and reliant on software. Increasingly they are engineered through Commercial Off The Shelf (COTS) (Commercial Off The Shelf) components to alleviate the spiralling costs and development time, often in the context of complex supply chains. A parallel increased concern for safety has resulted in a variety of safety standards, with a growing consensus that a safety life cycle is needed which is fully integrated with the design and development life cycle, to ensure that safety has appropriate influence on the design decisions as system development progresses. In this article we explore the application of an integrated approach to safety engineering in which assurance drives the engineering process. The paper re- ports on the outcome of a case study on a live industrial project with a view to evaluate: its suitability for application in a real-world safety engineering setting; its benefits and limitations in counteracting some of the difficulties of safety en- gineering with COTS components across supply chains; and, its effectiveness in generating evidence which can contribute directly to the construction of safety cases

    Design for diagnostics and prognostics:a physical- functional approach

    Get PDF

    Space biology initiative program definition review. Trade study 2: Prototype utilization in the development of space biology hardware

    Get PDF
    The objective was to define the factors which space flight hardware developers and planners should consider when determining: (1) the number of hardware units required to support program; (2) design level of the units; and (3) most efficient means of utilization of the units. The analysis considered technology risk, maintainability, reliability, and safety design requirements for achieving the delivery of highest quality flight hardware. Relative cost impacts of the utilization of prototyping were identified. The development of Space Biology Initiative research hardware will involve intertwined hardware/software activities. Experience has shown that software development can be an expensive portion of a system design program. While software prototyping could imply the development of a significantly different end item, an operational system prototype must be considered to be a combination of software and hardware. Hundreds of factors were identified that could be considered in determining the quantity and types of prototypes that should be constructed. In developing the decision models, these factors were combined and reduced by approximately ten-to-one in order to develop a manageable structure based on the major determining factors. The Baseline SBI hardware list of Appendix D was examined and reviewed in detail; however, from the facts available it was impossible to identify the exact types and quantities of prototypes required for each of these items. Although the factors that must be considered could be enumerated for each of these pieces of equipment, the exact status and state of development of the equipment is variable and uncertain at this time
    • …
    corecore