228 research outputs found

    A Joint Filter and Spectrum Shifting Architecture for Low Complexity Flexible UFMC in 5G

    Full text link
    © 2021 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] The hardware realization of Universal Filtered Multi Carrier (UFMC) architecture has attracted significant attention in fifth generation (5G) and beyond. In addition to the flexibility in fast Fourier transform (FFT)-length, a flexible prototype filter in combination with multiplicative complex spectrum shifting co-efficients is required for realizing flexible UFMC architecture. The existing architectures of UFMC transmitter commonly adopted fixed-size FFT-length, number of subbands, subband size, and filter-length. Moreover, the lack of flexible prototype filter and spectrum localization of filter co-efficients to individual subbands limits the flexible UFMC system design. In this paper, we propose VLSI architecture for a flexible length prototype filter that can generate spectrally shifted filter co-efficients to individual subbands in tune with the changing value of FFT-length, number of subbands, subband size, and filter-length. For 16-bit word size architecture, our proposed design produces filter co-efficients and spectrum shifting co-efficients upto length, 2(15). Thus, any desired combination of FFT-length, number of subbands, subband size and filter-length is selected to generate the filter co-efficients for the individual subbands. Moreover, complex multiplication and addition operations are reduced in proposed architecture, quantitatively, about 58.81% reduction in filtering unit is achieved over the state-of-the-art architecture. Finally, hardware implementation output and XILINX post route simulation result matches perfectly with MATLAB simulations.Kumar, V.; Mukherjee, M.; Lloret, J.; Ren, Z.; Kumari, M. (2021). A Joint Filter and Spectrum Shifting Architecture for Low Complexity Flexible UFMC in 5G. IEEE Transactions on Wireless Communications. 20(10):6706-6714. https://doi.org/10.1109/TWC.2021.3076039S67066714201

    Hough Transform recursive evaluation using Distributed Arithmetic

    Get PDF
    Paper submitted to the IFIP International Conference on Very Large Scale Integration (VLSI-SOC), Darmstadt, Germany, 2003.The Hough Transform (HT) is a useful technique in image segmentation, concretely for geometrical primitive detection. A Convolution-Based Recursive Method (CBRM) is presented for generic function evaluation. In this approach, calculations are carried out by a unique parametric formula which provides all function points by successive iteration. The case of combined trigonometric functions involved in the calculation of the HT is analyzed under this scope. An architecture for reconfigurable FPGA-based hardware, using Distributed Arithmetic (DA) implements the design. It provides memory and hardware resource saving as well as speed improvements according to the experiments carried out with the HT

    An approach to the application of shift-and-add algorithms on engineering and industrial processes

    Get PDF
    Different kinds of algorithms can be chosen so as to compute elementary functions. Among all of them, it is worthwhile mentioning the shift-and-add algorithms due to the fact that they have been specifically designed to be very simple and to save computer resources. In fact, almost the only operations usually involved with these methods are additions and shifts, which can be easily and efficiently performed by a digital processor. Shift-and-add algorithms allow fairly good precision with low cost iterations. The most famous algorithm belonging to this type is CORDIC. CORDIC has the capability of approximating a wide variety of functions with only the help of a slight change in their iterations. In this paper, we will analyze the requirements of some engineering and industrial problems in terms of type of operands and functions to approximate. Then, we will propose the application of shift-and-add algorithms based on CORDIC to these problems. We will make a comparison between the different methods applied in terms of the precision of the results and the number of iterations required.This research was supported by the Conselleria de Educacion of the Valencia Region Government under grant number GV/2011/043

    Design and Implementation of an RF Front-End for Software Defined Radios

    Get PDF
    Software Defined Radios have brought a major reformation in the design standards for radios, in which a large portion of the functionality is implemented through pro­ grammable signal processing devices, giving the radio the ability to change its op­ erating parameters to accommodate new features and capabilities. A software radio approach reduces the content of radio frequency and other analog components of the traditional radios and emphasizes digital signal processing to enhance overall receiver flexibility. Field Programmable Gate Arrays (FPGA) are a suitable technology for the hardware platform as they offer the potential of hardware-like performance coupled with software-like programmability. Software defined radio is a very broad field, encompassing the design of various technologies all the way from the antenna to RF, IF, and baseband digital design. The RF section primarily consists of analog hardware modules. The IF and baseband sections are primarily digital. It is the general process of the radio to convert the incoming signal from RF to IF and then IF to baseband for better signal processing system. In this thesis, some of major building blocks of a Software defined radio are de­ signed and implemented using FPGAs. The design of a Digital front end, which provides the bridge between the baseband and analog RF portions of a wireless receiver, is synthesized. The Digital front end receiver consists of a digital down converter(DDC) which in turn comprises of a direct digital frequency synthesizer (DDFS), a phase accumulator and a low pass filter. The signal processing block of the DDFS is executed using Co-ordinate Rotation Digital Computer (CORDIC) iii Abstract algorithm. Cascaded-Integrator-Comb filters (CIC) are implemented for changing the sample rate of the incoming data. Application of a DDC includes software ra­ dios, multicarrier, multimode digital receivers, micro and pico cell systems,broadband data applications, instrumentation and test equipment and in-building wireless tele­ phony. Also, in this thesis, interfaces for connecting Texas Instruments high speed and high resolution Analog-to-Digital converters (ADC) and Digital-to-Analog converters (DAC) with Xilinx Virtex-5 FPGAs are also implemented and demonstrated

    Parametrized Architecture for Hough Transform Recursive Evaluation

    Get PDF
    Paper submitted to International Workshop on Spectral Methods and Multirate Signal Processing (SMMSP), Barcelona, España, 2003.The Hough Transform (HT) is a useful technique in image segmentation, concretely for geometrical primitive detection. A Convolution-Based Recursive Method (CBRM) is presented for function evaluation. In this generic approach, calculations are carried out by an unique parametric formula which provides all function points by successive iterations. The case of combined trigonometric functions involved in the calculation of the HT is analyzed under this scope. An architecture for reconfigurable FPGA-based hardware, using Distributed Arithmetic (DA) implements the design. The CBRM implementation provides improvements such as memory and hardware resources saving, as well as a good balance between speed and error-dependable precision

    VLSI Implementation of a Cost-Efficient Loeffler-DCT Algorithm with Recursive CORDIC for DCT-Based Encoder

    Get PDF
    This paper presents a low-cost and high-quality; hardware-oriented; two-dimensional discrete cosine transform (2-D DCT) signal analyzer for image and video encoders. In order to reduce memory requirement and improve image quality; a novel Loeffler DCT based on a coordinate rotation digital computer (CORDIC) technique is proposed. In addition; the proposed algorithm is realized by a recursive CORDIC architecture instead of an unfolded CORDIC architecture with approximated scale factors. In the proposed design; a fully pipelined architecture is developed to efficiently increase operating frequency and throughput; and scale factors are implemented by using four hardware-sharing machines for complexity reduction. Thus; the computational complexity can be decreased significantly with only 0.01 dB loss deviated from the optimal image quality of the Loeffler DCT. Experimental results show that the proposed 2-D DCT spectral analyzer not only achieved a superior average peak signal–noise ratio (PSNR) compared to the previous CORDIC-DCT algorithms but also designed cost-efficient architecture for very large scale integration (VLSI) implementation. The proposed design was realized using a UMC 0.18-μm CMOS process with a synthesized gate count of 8.04 k and core area of 75,100 μm2. Its operating frequency was 100 MHz and power consumption was 4.17 mW. Moreover; this work had at least a 64.1% gate count reduction and saved at least 22.5% in power consumption compared to previous designs

    Architectural implementation of cordic unit and its applications

    Get PDF
    The ubiquity of DSP has made increasing demand to develop area efficient and accurate architectures in carrying out many nonlinear arithmetic operations. One such architecture is CORDIC unit which has many applications in the field of DSP including implementing transforms based on Fourier basis. This report presents architecture of CORDIC, embedded with a scaling unit that has only minimal number of adders and shifters. It can be implemented in rotation mode as well as vectoring mode. The purpose of the design is to get a scaling free CORDIC unit preserving the design of original algorithm. The proposed design has a considerable reduction in hardware when compared with other scaling free architectures. The analysis of error for different word lengths and different input ranges for fixed word length gives a better choice to choose the parameters. The error in rotation mode for 16 bit data path, obtained for Y equivalent input is 0.073% and for X equivalent input is 0.067%. We also report architecture of a DFT core that is implemented using low latency CORDIC. A scaling unit has been included to get scaled outputs. The reported DFT core architecture has 22 adders in total, in addition to 2 CORDIC units. DDS or NCO are nowadays prominently used in the applications of RF signal processing, satellite communications, etc. This report also brings out the FPGA implementation of one such DDS which has quadrature outputs. The proposed DDS design, which is based on pipelined CORDIC, has considerable improvement in terms of SFDR compared to other existing designs at reduced hardware. This report also proposes multiplier-less architecture for the implementation of radix-2^2 folded pipelined complex FFT core based on CORDIC technique. The number of points considered in the work is sixteen and the folding is done by a factor of four

    Performance Analysis and Design of a Discreet Cosine Transform processor Using CORDIC algorithm

    Get PDF
    CORDIC is an acronym for COrdinate Rotation Digital Computer. It is a class of shift adds algorithms for rotating vectors in a plane, which is usually used for the calculation of trigonometric functions, multiplication, division and conversion between binary and mixed radix number systems of DSP applications, such as Discreet cosine Transform(DCT). The Jack E. Volder's CORDIC algorithm is derived from the general equations for vector rotation. The CORDIC algorithm has become a widely used approach to elementary function evaluation when the silicon area is a primary constraint. The implementation of CORDIC algorithm requires less complex hardware than the conventional method. In digital communication, the straightforward evaluation of the cited functions is important, numerous matrix based adaptive signal processing algorithms require the solution of systems of linear equations, the computation of eigen values, eigenvectors or singular values. All these tasks can be efficiently implemented using processing elements performing vector rotations. The (CORDIC) offers the opportunity to calculate all the desired functions in a rather simple and elegant way. Due to the simplicity of the involved operations the CORDIC algorithm is very well suited for VLSI implementation. The rotated vector is also scaled making a scale factor correction necessary. VHDL coding and simulation of selected CORDIC algorithm for sine and cosine, the comparison of resultant implementations and the specifics of the FPGA implementation has been discussed. In this thesis, the CORDIC algorithm has been implemented in XILINX Spartan 3E FPGA kit using VHDL and is found to be accurate. It also contains the implementation of Discrete Cosine Transform using radix-2 decimation-in-time algorithm in Xilinx. on the same FPGA kit. Due to the high speed, low cost and greater flexibility offered by FPGAs over DSP processors the FPGA based computing is becoming the heart of all digital signal processing systems of modern era. Moreover the generation of test bench by Xilinx ISE 9.2i verifies the results with directly computed dct values from mat lab
    corecore