398,076 research outputs found

    Emergence of Benzimidazole- and Strobilurin-Quinone Outside Inhibitor-Resistant Strains of <em>Colletotrichum gloeosporioides</em> sensu lato, the Causal Fungus of Japanese Pear Anthracnose, and Alternative Fungicides to Resistant Strains

    Get PDF
    Japanese pear anthracnose (JPA) can cause severe tree defoliation during the growing season. Infected trees become weak and produce fewer flower buds the following spring. This economically serious fungal plant disease has affected cultivated pears in Japan since 1910. Initially, JPA was controlled by benzimidazole fungicides. However, benzimidazole-resistant pathogen strains emerged in the late 1990s, and the range of JPA has expanded in Japan. Since then strobilurin-quinone outside inhibitors (ST-QoIs) such as azoxystrobin and kresoxim-methyl became popular, but ST-QoI-resistant pathogen strains appeared. By 2005, JPA control became difficult once again. In this chapter, we outline the history of JPA fungicide resistance problems, assess advantages and disadvantages of available fungicide options, and develop JPA management strategies based on evidences we obtained from a series of field and lab studies

    The Viability Of An Ecologically Valid Chronic Sleep Restriction And Circadian Timing Protocol: An Examination Of Sample Attrition, Compliance, And Effectiveness At Impacting Sleepiness And Mood

    Get PDF
    Chronic sleep restriction (SR) increases sleepiness, negatively impacts mood, and impairs a variety of cognitive performance measures. The vast majority of work establishing these effects are tightly controlled in-lab experimental studies. Examining commonly-experienced levels of SR in naturalistic settings is more difficult and generally involves observational methods, rather than active manipulations of sleep. The same is true for analyzing behavioral and cognitive outcomes at circadian unfavorable times. The current study tested the ability of an at-home protocol to manipulate sleep schedules (i.e., impose SR), as well as create a mismatch between a subject’s circadian preference and time of testing. Viability of the protocol was assessed via completion, compliance with the SR, and success at manipulating sleepiness and mood. An online survey was completed by 3630 individuals to assess initial eligibility, 256 agreed via email response to participate in the 3-week study, 221 showed for the initial in-person session, and 184 completed the protocol (175 with complete data). The protocol consisted of 1 week at-home SR (5-6 hours in bed/night), 1 week wash-out, and 1 week well-rested (WR: 8-9 hours in bed/night). Sleep was monitored with actigraphy, diary, and call-ins. Risk management strategies were implemented for subject safety. At the end of each experimental week, subjects reported sleepiness and mood ratings. Protocol completion was 83%, with lower depression scores, higher anxiety scores, and morning session assignment predicting completion. Compliance with the sleep schedule was also very good. Subjects spent approximately 2 hours less time in bed/night and obtained an average of 1.5 hours less nightly sleep during SR, relative to WR, with 82% of subjects obtaining at least 60 minutes less average nightly sleep. Sleepiness and mood were impacted as expected by SR. These findings show the viability of studying experimental chronic sleep restriction outside the laboratory, assuming appropriate safety precautions are taken, thus allowing investigators to significantly increase ecological validity over strictly controlled in-lab studies

    Flow Cell Characterisation: Flow Visualisation, Pressure Drop and Mass Transport at 2D Electrodes in a Rectangular Channel

    Get PDF
    The reaction environment in a C-Flow Lab 5 × 5® laboratory-scale electrochemical flow cell was characterised in terms of fluid flow, hydraulic pressure drop and space averaged mass transport coefficient. The cell was studied in flow-by configuration with smooth, planar electrodes within its rectangular flow channels. The effect of a turbulence promoter (a polymer mesh with a volumetric porosity of 0.84) placed next to the working electrode was also evaluated. Electrolyte volumetric flow rates ranged from 0.3 to 1.5 dm3 min-1, corresponding to mean linear velocities of 2 to 10 cm s-1 past the electrode surface and channel Reynolds numbers of 53 to 265. The pressure drop was measured both over the electrode channel and through the whole cell as a function of mean linear velocity. The electrochemical performance was quantified using the limiting current technique, which was used to determine the mass transport coefficient over the same range of flow rate. Results were compared to well-characterised electrochemical flow reactors found in the literature. The mass transport enhancement factor due to the presence of the turbulence promoter was between 1.6 and 3.9 under the studied conditions. Reactant conversion in batch recirculation mode and normalised space velocity were predicted from the electrochemical plug flow reactor equation

    MP 2010-01

    Get PDF
    Agronomy: barley, biomass, fertilizer, and sunflowers -- Horticulture: Controlled Environment Agriculture Laboratory, Georgeson Botanical Garden -- Animal Husbandry: Reindeer Research Program -- Student research -- Partnership

    Controlling the Morphology of Composite Latex Particles

    Get PDF

    Application of an Ultrasonic Sensor to Monitor Soil Erosion and Deposition

    Get PDF
    While erosion and deposition are naturally occurring processes, these processes can be accelerated by human influences. The acceleration of erosion causes damage to human assets and costs billions of dollars to mitigate. Monitoring erosion at high resolutions can provide researchers and managers the data necessary to help manage erosion. Current erosion monitoring methods tend to be invasive to the area, record low frequency measurements, have a narrow spatial range of measurement, or are very expensive. There is a need for an affordable monitoring system capable of monitoring erosion and deposition non-invasively at a high resolution. The objectives of this research were to (1) design and construct a non-invasive sediment monitoring system (SMS) using an ultrasonic sensor capable of monitoring erosion and deposition continuously, (2) test the system in the lab and field, (3) and determine the applications and limitations of the system. The ultrasonic sensor measures the time of reflectance of sound waves to calculate the distance to the area non-invasively. The SMS was tested in the lab to determine the extent to which the soil type, slope, surface topography, change in distance and vegetation impact the SMS’s ultrasonic sensor’s measurement. It was found that the soil type, slope and surface topography had little effect on the measurement, but the change in distance of the measurement and the introduction of vegetation impacted the measurement. The error in measurement increased as the sensing distance increased, and vegetation interferes with the measurement. In the field during high flows, as erosion and deposition occur, the changes in distance were determined in near real-time, allowing for the calculation of erosion and deposition quantities. The system was deployed to monitor deposition on sandy streambanks in the Nebraska Sandhills and erosion on a streambank and field plot in Lincoln, Nebraska. The system was proven successful in measuring sediment change during high flow events but yielded some error; ±1.06 mm in controlled lab settings and ±10.79 mm when subjected to environmental factors such as temperature, relative humidity and wind. Advisors: Aaron Mittelstet and Nancy Shan

    Nanoscale-targeted patch-clamp recordings of functional presynaptic ion channels

    Get PDF
    Important modulatory roles have been attributed to presynaptic NMDA receptors (NMDARs) located on cerebellar interneuron terminals. Evidence supporting a presynaptic location includes an increase in the frequency of mini events following the application of NMDA and gold particle-labelled NMDA receptor antibody localisation. However, more recent work, using calcium indicators, casts doubt on the idea of presynaptic NMDARs because basket cell varicosities did not show the expected calcium rise following either the local iontophoresis of L-aspartate or the two-photon uncaging of glutamate. (In theory such calcium imaging is sensitive enough to detect the calcium rise from even a single activated receptor.) It has therefore been suggested that the effects of NMDA are mediated via the activation of somatodendritic channels, which subsequently cause a subthreshold depolarization of the axon. Here we report results from a vibrodissociated preparation of cerebellar Purkinje cells, in which the interneuron cell bodies are no longer connected but many of their terminal varicosities remain attached and functional. This preparation can retain both inhibitory and excitatory inputs. We find that the application of NMDA increases the frequency of both types of synaptic event. The characteristics of these events suggest they can originate from interneuron, parallel fiber and even climbing fiber terminals. Interestingly, retrograde signalling seems to activate only the inhibitory terminals. Finally, antibody staining of these cells shows NMDAR-like immunoreactivity co-localised with synaptic markers. Since the Purkinje cells show no evidence of postsynaptic NMDAR-mediated currents, we conclude that functional NMDA receptors are located on presynaptic terminals

    Controlled Experimentation in Naturalistic Mobile Settings

    Full text link
    Performing controlled user experiments on small devices in naturalistic mobile settings has always proved to be a difficult undertaking for many Human Factors researchers. Difficulties exist, not least, because mimicking natural small device usage suffers from a lack of unobtrusive data to guide experimental design, and then validate that the experiment is proceeding naturally.Here we use observational data to derive a set of protocols and a simple checklist of validations which can be built into the design of any controlled experiment focused on the user interface of a small device. These, have been used within a series of experimental designs to measure the utility and application of experimental software. The key-point is the validation checks -- based on the observed behaviour of 400 mobile users -- to ratify that a controlled experiment is being perceived as natural by the user. While the design of the experimental route which the user follows is a major factor in the experimental setup, without check validations based on unobtrusive observed data there can be no certainty that an experiment designed to be natural is actually progressing as the design implies.Comment: 12 pages, 3 table
    corecore