22 research outputs found

    Towards novelty-driven recommender systems

    Get PDF
    Abstract We get recommendations about everything and in a pervasive way. Recommender systems act like compasses for our journey in complex conceptual spaces and we more and more rely on recommendations to ground most of our decisions. Despite their extraordinary efficiency and reliability, recommender systems are far from being flawless. They display instead serious drawbacks that might seriously reduce our open-mindedness and our capacity of experiencing diversity and possibly conflicting views. In this paper, we carefully investigate the very foundations of recommendation algorithms in order to identify the determinants of what could be the next generation of recommender systems. We postulate that it is possible to overcome the limitations of current recommender systems, by getting inspiration from the way in which people seek for novelties and give value to new experiences. From this perspective, the notion of adjacent possible seems a relevant one to redesign recommender systems in a way that better aligns with the natural inclination of human beings towards new and pleasant experiences. We claim that this new generation of recommenders could help in overcoming the pitfalls of current technologies, namely the tendency towards a lack of diversity, polarization, the emergence of echo-chambers and misinformation

    Sensor Placement Strategies for the Seismic Monitoring of Complex Vaulted Structures of the Modern Architectural Heritage

    Get PDF
    Effective diagnostic and monitoring systems are highly needed in the building and infrastructure sector, to provide a comprehensive assessment of the structural health state and improve the maintenance and restoration planning. Vibration-based techniques, and especially ambient vibration testing, have proved to be particularly suitable for both periodic and continuous monitoring of existing structures. As a general requirement, permanent systems must include a sensing network able to run a continuous surveillance and provide reliable analyses based on different information sources. The variability in the environmental and operating conditions needs to be accounted for in designing such a sensor network, but it is mainly the structural typology that governs the optimal sensor placement strategy. Architectural heritage consists of a great variety of buildings and monuments that significantly differ from each other in terms of typology, historic period, construction techniques, and materials. In this paper, the main issues regarding seismic protection and analysis of the modern architectural heritage are introduced and applied to one of the vaulted structures built by Pier Luigi Nervi in the Turin Exhibition Centre. The importance of attaining an adequate level of knowledge in historic structures is also highlighted. After an overview of the Turin Exhibition Centre and its construction innovations, this paper focuses on Hall B, describing the structural design conceived by Pier Luigi Nervi. A seismic assessment of the structures of Hall B is then presented, considering the potential seismic damage to nonstructural elements. Subsequently, the application of an optimal sensor placement strategy is described with reference to two different scenarios: the first one corresponding to the undamaged structure and the second one that considers a possible damage to the infill walls. Finally, a novel damage-scenario-driven sensor placement strategy based on a combination of the two above mentioned is proposed and discussed. One of the major conclusions drawn from the analyses performed is that nonstructural elements undergoing seismic damage or degradation may significantly affect the global dynamic response and consequently the optimal sensing configurations

    Towards an integrated vulnerability-based approach for evaluating, managing and mitigating earthquake risk in urban areas

    Get PDF
    Tese de doutoramento em Civil EngineeringSismos de grande intensidade, como aqueles que ocorreram na Turquía-Síria (2023) ou México (2017) deviam chamar a atenção para o projeto e implementação de ações proativas que conduzam à identificação de bens vulneráveis. A presente tese propõe um fluxo de trabalho relativamente simples para efetuar avaliações da vulnerabilidade sísmica à escala urbana mediante ferramentas digitais. Um modelo de vulnerabilidade baseado em parâmetros é adotado devido à afinidade que possui com o Catálogo Nacional de Monumentos Históricos mexicano. Uma primeira implementação do método (a grande escala) foi efetuada na cidade histórica de Atlixco (Puebla, México), demonstrando a sua aplicabilidade e algumas limitações, o que permitiu o desenvolvimento de uma estratégia para quantificar e considerar as incertezas epistémicas encontradas nos processos de aquisição de dados. Devido ao volume de dados tratado, foi preciso desenvolver meios robustos para obter, armazenar e gerir informações. O uso de Sistemas de Informação Geográfica, com programas à medida baseados em linguagem Python e a distribuição de ficheiros na ”nuvem”, facilitou a criação de bases de dados de escala urbana para facilitar a aquisição de dados em campo, os cálculos de vulnerabilidade e dano e, finalmente, a representação dos resultados. Este desenvolvimento foi a base para um segundo conjunto de trabalhos em municípios do estado de Morelos (México). A caracterização da vulnerabilidade sísmica de mais de 160 construções permitiu a avaliação da representatividade do método paramétrico pela comparação entre os níveis de dano teórico e os danos observados depois do terramoto de Puebla-Morelos (2017). Esta comparação foi a base para efetuar processos de calibração e ajuste assistidos por algoritmos de aprendizagem de máquina (Machine Learning), fornecendo bases para o desenvolvimento de modelos de vulnerabilidade à medida (mediante o uso de Inteligência Artificial), apoiados nas evidências de eventos sísmicos prévios.Strong seismic events like the ones of Türkiye-Syria (2023) or Mexico (2017) should guide our attention to the design and implementation of proactive actions aimed to identify vulnerable assets. This work is aimed to propose a suitable and easy-to-implement workflow for performing large-scale seismic vulnerability assessments in historic environments by means of digital tools. A vulnerability-oriented model based on parameters is adopted given its affinity with the Mexican Catalogue of Historical Monuments. A first large-scale implementation of this method in the historical city of Atlixco (Puebla, Mexico) demonstrated its suitability and some limitations, which lead to develop a strategy for quantifying and involving the epistemic uncertainties found during the data acquisition process. Given the volume of data that these analyses involve, it was necessary to develop robust data acquisition, storing and management strategies. The use of Geographical Information System environments together with customised Python-based programs and cloud-based distribution permitted to assemble urban databases for facilitating field data acquisition, performing vulnerability and damage calculations, and representing outcomes. This development was the base for performing a second large-scale assessment in selected municipalities of the state of Morelos (Mexico). The characterisation of the seismic vulnerability of more than 160 buildings permitted to assess the representativeness of the parametric vulnerability approach by comparing the theoretical damage estimations against the damages observed after the Puebla-Morelos 2017 Earthquakes. Such comparison is the base for performing a Machine Learning assisted process of calibration and adjustment, representing a feasible strategy for calibrating these vulnerability models by using Machine-Learning algorithms and the empirical evidence of damage in post-seismic scenarios.This work was partly financed by FCT/MCTES through national funds (PIDDAC) under the R&D Unit Institute for Sustainability and Innovation in Structural Engineering (ISISE), reference UIDB/04029/2020. This research had financial support provided by the Portuguese Foundation of Science and Technology (FCT) through the Analysis and Mitigation of Risks in Infrastructures (InfraRisk) program under the PhD grant PD/BD/150385/2019

    PV System Design and Performance

    Get PDF
    Photovoltaic solar energy technology (PV) has been developing rapidly in the past decades, leading to a multi-billion-dollar global market. It is of paramount importance that PV systems function properly, which requires the generation of expected energy both for small-scale systems that consist of a few solar modules and for very large-scale systems containing millions of modules. This book increases the understanding of the issues relevant to PV system design and correlated performance; moreover, it contains research from scholars across the globe in the fields of data analysis and data mapping for the optimal performance of PV systems, faults analysis, various causes for energy loss, and design and integration issues. The chapters in this book demonstrate the importance of designing and properly monitoring photovoltaic systems in the field in order to ensure continued good performance

    The Fuzziness in Molecular, Supramolecular, and Systems Chemistry

    Get PDF
    Fuzzy Logic is a good model for the human ability to compute words. It is based on the theory of fuzzy set. A fuzzy set is different from a classical set because it breaks the Law of the Excluded Middle. In fact, an item may belong to a fuzzy set and its complement at the same time and with the same or different degree of membership. The degree of membership of an item in a fuzzy set can be any real number included between 0 and 1. This property enables us to deal with all those statements of which truths are a matter of degree. Fuzzy logic plays a relevant role in the field of Artificial Intelligence because it enables decision-making in complex situations, where there are many intertwined variables involved. Traditionally, fuzzy logic is implemented through software on a computer or, even better, through analog electronic circuits. Recently, the idea of using molecules and chemical reactions to process fuzzy logic has been promoted. In fact, the molecular word is fuzzy in its essence. The overlapping of quantum states, on the one hand, and the conformational heterogeneity of large molecules, on the other, enable context-specific functions to emerge in response to changing environmental conditions. Moreover, analog input–output relationships, involving not only electrical but also other physical and chemical variables can be exploited to build fuzzy logic systems. The development of “fuzzy chemical systems” is tracing a new path in the field of artificial intelligence. This new path shows that artificially intelligent systems can be implemented not only through software and electronic circuits but also through solutions of properly chosen chemical compounds. The design of chemical artificial intelligent systems and chemical robots promises to have a significant impact on science, medicine, economy, security, and wellbeing. Therefore, it is my great pleasure to announce a Special Issue of Molecules entitled “The Fuzziness in Molecular, Supramolecular, and Systems Chemistry.” All researchers who experience the Fuzziness of the molecular world or use Fuzzy logic to understand Chemical Complex Systems will be interested in this book

    Translational Research for Zoonotic Parasites: New Findings toward Improved Diagnostics, Therapy and Prevention

    Get PDF
    In this book is reported novel information on diagnosis, treatment, and control of parasites that are naturally transmitted from animal reservoirs to humans. Subjects: Public Health and Healthcare: Prevention; Medicine and Pharmacology: Therapy

    Phylogeny and evolution of Monoplacophora and Mollusca

    Get PDF
    The Mollusca comprises eight classes which are highly diverse in their morphology as well as in molecular appearance. The class level relationships in molluscs were hotly debated during decades and are still under discussion as there is no overall support for one single concept. Morphological and recent phylogenomic studies support the hypothesis of Aculifera (Solenogastres, Caudofoveata and Polyplacophora) and summarize Bivalvia, Cephalopoda, Gastropoda, Monoplacophora and Scaphopoda as the Conchifera. Alternative concepts as Testaria (Bivalvia, Cephalopoda, Gastropoda, Monoplacophora, Scaphopoda and Polyplacophora) or Serialia (Monoplacophora + Polyplacophora) were suggested in the past based on morphological analyses (Testaria) or mainly molecular evidence (Serialia). In order to bring resolution to the class relationships and the early evolution within Mollusca we compiled several comprehensive taxon sets comprising different molecular datasets: combined nuclear and mitochondrial markers obtained via Sanger sequencing (“standard markers”), mitochondrial genomes (analyzing the phylogenetic information of the sequence data as well as comparing the gene arrangements) and phylogenomic data obtained via Next Generation Sequencing. We were able to generate novel data of several species of the elusive class Monoplacophora. Based on the set of standard markers, we found support for Serialia whereas the phylogenomic approach leads to Aculifera and Conchifera, providing first molecular evidence for Monoplacophora sister to Cephalopoda plus other conchiferans; a clade of Gastropoda and Scaphopoda is also supported. Both phylogenetic analyses were used for time estimations and resulted in congruent ages for the molluscan stem (Precambrian) and the diversification of Mollusca (584Mya). We were the first to present a complete mitochondrial genome of a monoplacophoran species ever. Analyzing the mitochondrial gene arrangements we were able to detect potential synapomorphies for Mollusca. Standard marker analyses on comprehensive taxon sets provided novel phylogenetic hypotheses on several molluscan subgroups, such as chitons and gastropods, in particular heterobranchs, challenging mitogenomic approaches and results in the latter. Overall, our studies addressed the phylogeny and evolution of Mollusca and subgroups with a variety of markers and methods and helped to pave the way from using multilocus markers and mitogenomics towards whole genomes
    corecore