226 research outputs found

    Online learning in repeated auctions

    Full text link
    Motivated by online advertising auctions, we consider repeated Vickrey auctions where goods of unknown value are sold sequentially and bidders only learn (potentially noisy) information about a good's value once it is purchased. We adopt an online learning approach with bandit feedback to model this problem and derive bidding strategies for two models: stochastic and adversarial. In the stochastic model, the observed values of the goods are random variables centered around the true value of the good. In this case, logarithmic regret is achievable when competing against well behaved adversaries. In the adversarial model, the goods need not be identical and we simply compare our performance against that of the best fixed bid in hindsight. We show that sublinear regret is also achievable in this case and prove matching minimax lower bounds. To our knowledge, this is the first complete set of strategies for bidders participating in auctions of this type

    Improper Learning by Refuting

    Get PDF
    The sample complexity of learning a Boolean-valued function class is precisely characterized by its Rademacher complexity. This has little bearing, however, on the sample complexity of efficient agnostic learning. We introduce refutation complexity, a natural computational analog of Rademacher complexity of a Boolean concept class and show that it exactly characterizes the sample complexity of efficient agnostic learning. Informally, refutation complexity of a class C is the minimum number of example-label pairs required to efficiently distinguish between the case that the labels correlate with the evaluation of some member of C (structure) and the case where the labels are i.i.d. Rademacher random variables (noise). The easy direction of this relationship was implicitly used in the recent framework for improper PAC learning lower bounds of Daniely and co-authors via connections to the hardness of refuting random constraint satisfaction problems. Our work can be seen as making the relationship between agnostic learning and refutation implicit in their work into an explicit equivalence. In a recent, independent work, Salil Vadhan discovered a similar relationship between refutation and PAC-learning in the realizable (i.e. noiseless) case

    Stochastic Contextual Bandits with Graph-based Contexts

    Full text link
    We naturally generalize the on-line graph prediction problem to a version of stochastic contextual bandit problems where contexts are vertices in a graph and the structure of the graph provides information on the similarity of contexts. More specifically, we are given a graph G=(V,E)G=(V,E), whose vertex set VV represents contexts with {\em unknown} vertex label yy. In our stochastic contextual bandit setting, vertices with the same label share the same reward distribution. The standard notion of instance difficulties in graph label prediction is the cutsize ff defined to be the number of edges whose end points having different labels. For line graphs and trees we present an algorithm with regret bound of O~(T2/3K1/3f1/3)\tilde{O}(T^{2/3}K^{1/3}f^{1/3}) where KK is the number of arms. Our algorithm relies on the optimal stochastic bandit algorithm by Zimmert and Seldin~[AISTAT'19, JMLR'21]. When the best arm outperforms the other arms, the regret improves to O~(KTâ‹…f)\tilde{O}(\sqrt{KT\cdot f}). The regret bound in the later case is comparable to other optimal contextual bandit results in more general cases, but our algorithm is easy to analyze, runs very efficiently, and does not require an i.i.d. assumption on the input context sequence. The algorithm also works with general graphs using a standard random spanning tree reduction

    Coresets-Methods and History: A Theoreticians Design Pattern for Approximation and Streaming Algorithms

    Get PDF
    We present a technical survey on the state of the art approaches in data reduction and the coreset framework. These include geometric decompositions, gradient methods, random sampling, sketching and random projections. We further outline their importance for the design of streaming algorithms and give a brief overview on lower bounding techniques

    Corporate influence and the academic computer science discipline.

    Get PDF
    Prosopography of a major academic center for computer science

    Differentially Private Model Selection with Penalized and Constrained Likelihood

    Full text link
    In statistical disclosure control, the goal of data analysis is twofold: The released information must provide accurate and useful statistics about the underlying population of interest, while minimizing the potential for an individual record to be identified. In recent years, the notion of differential privacy has received much attention in theoretical computer science, machine learning, and statistics. It provides a rigorous and strong notion of protection for individuals' sensitive information. A fundamental question is how to incorporate differential privacy into traditional statistical inference procedures. In this paper we study model selection in multivariate linear regression under the constraint of differential privacy. We show that model selection procedures based on penalized least squares or likelihood can be made differentially private by a combination of regularization and randomization, and propose two algorithms to do so. We show that our private procedures are consistent under essentially the same conditions as the corresponding non-private procedures. We also find that under differential privacy, the procedure becomes more sensitive to the tuning parameters. We illustrate and evaluate our method using simulation studies and two real data examples
    • …
    corecore