52 research outputs found

    PersoNER: Persian named-entity recognition

    Full text link
    © 1963-2018 ACL. Named-Entity Recognition (NER) is still a challenging task for languages with low digital resources. The main difficulties arise from the scarcity of annotated corpora and the consequent problematic training of an effective NER pipeline. To abridge this gap, in this paper we target the Persian language that is spoken by a population of over a hundred million people world-wide. We first present and provide ArmanPerosNERCorpus, the first manually-annotated Persian NER corpus. Then, we introduce PersoNER, an NER pipeline for Persian that leverages a word embedding and a sequential max-margin classifier. The experimental results show that the proposed approach is capable of achieving interesting MUC7 and CoNNL scores while outperforming two alternatives based on a CRF and a recurrent neural network

    Language as a latent sequence: Deep latent variable models for semi-supervised paraphrase generation

    Get PDF
    This paper explores deep latent variable models for semi-supervised paraphrase generation, where the missing target pair for unlabelled data is modelled as a latent paraphrase sequence. We present a novel unsupervised model named variational sequence auto-encoding reconstruction (VSAR), which performs latent sequence inference given an observed text. To leverage information from text pairs, we additionally introduce a novel supervised model we call dual directional learning (DDL), which is designed to integrate with our proposed VSAR model. Combining VSAR with DDL (DDL+VSAR) enables us to conduct semi-supervised learning. Still, the combined model suffers from a cold-start problem. To further combat this issue, we propose an improved weight initialisation solution, leading to a novel two-stage training scheme we call knowledge-reinforced-learning (KRL). Our empirical evaluations suggest that the combined model yields competitive performance against the state-of-the-art supervised baselines on complete data. Furthermore, in scenarios where only a fraction of the labelled pairs are available, our combined model consistently outperforms the strong supervised model baseline (DDL) by a significant margin ( ; Wilcoxon test). Our code is publicly available at https://github.com/jialin-yu/latent-sequence-paraphrase

    Improving the translation environment for professional translators

    Get PDF
    When using computer-aided translation systems in a typical, professional translation workflow, there are several stages at which there is room for improvement. The SCATE (Smart Computer-Aided Translation Environment) project investigated several of these aspects, both from a human-computer interaction point of view, as well as from a purely technological side. This paper describes the SCATE research with respect to improved fuzzy matching, parallel treebanks, the integration of translation memories with machine translation, quality estimation, terminology extraction from comparable texts, the use of speech recognition in the translation process, and human computer interaction and interface design for the professional translation environment. For each of these topics, we describe the experiments we performed and the conclusions drawn, providing an overview of the highlights of the entire SCATE project

    Linguistically-Informed Neural Architectures for Lexical, Syntactic and Semantic Tasks in Sanskrit

    Full text link
    The primary focus of this thesis is to make Sanskrit manuscripts more accessible to the end-users through natural language technologies. The morphological richness, compounding, free word orderliness, and low-resource nature of Sanskrit pose significant challenges for developing deep learning solutions. We identify four fundamental tasks, which are crucial for developing a robust NLP technology for Sanskrit: word segmentation, dependency parsing, compound type identification, and poetry analysis. The first task, Sanskrit Word Segmentation (SWS), is a fundamental text processing task for any other downstream applications. However, it is challenging due to the sandhi phenomenon that modifies characters at word boundaries. Similarly, the existing dependency parsing approaches struggle with morphologically rich and low-resource languages like Sanskrit. Compound type identification is also challenging for Sanskrit due to the context-sensitive semantic relation between components. All these challenges result in sub-optimal performance in NLP applications like question answering and machine translation. Finally, Sanskrit poetry has not been extensively studied in computational linguistics. While addressing these challenges, this thesis makes various contributions: (1) The thesis proposes linguistically-informed neural architectures for these tasks. (2) We showcase the interpretability and multilingual extension of the proposed systems. (3) Our proposed systems report state-of-the-art performance. (4) Finally, we present a neural toolkit named SanskritShala, a web-based application that provides real-time analysis of input for various NLP tasks. Overall, this thesis contributes to making Sanskrit manuscripts more accessible by developing robust NLP technology and releasing various resources, datasets, and web-based toolkit.Comment: Ph.D. dissertatio

    Extracting keywords from tweets

    Get PDF
    Nos últimos anos, uma enorme quantidade de informações foi disponibilizada na Internet. As redes sociais estão entre as que mais contribuem para esse aumento no volume de dados. O Twitter, em particular, abriu o caminho, enquanto plataforma social, para que pessoas e organizações possam interagir entre si, gerando grandes volumes de dados a partir dos quais é possível extrair informação útil. Uma tal quantidade de dados, permitirá por exemplo, revelar-se importante se e quando, vários indivíduos relatarem sintomas de doença ao mesmo tempo e no mesmo lugar. Processar automaticamente um tal volume de informações e obter a partir dele conhecimento útil, torna-se, no entanto, uma tarefa impossível para qualquer ser humano. Os extratores de palavras-chave surgem neste contexto como uma ferramenta valiosa que visa facilitar este trabalho, ao permitir, de uma forma rápida, ter acesso a um conjunto de termos caracterizadores do documento. Neste trabalho, tentamos contribuir para um melhor entendimento deste problema, avaliando a eficácia do YAKE (um algoritmo de extração de palavras-chave não supervisionado) em cima de um conjunto de tweets, um tipo de texto, caracterizado não só pelo seu reduzido tamanho, mas também pela sua natureza não estruturada. Embora os extratores de palavras-chave tenham sido amplamente aplicados a textos genéricos, como a relatórios, artigos, entre outros, a sua aplicabilidade em tweets é escassa e até ao momento não foi disponibilizado formalmente nenhum conjunto de dados. Neste trabalho e por forma a contornar esse problema optámos por desenvolver e tornar disponível uma nova coleção de dados, um importante contributo para que a comunidade científica promova novas soluções neste domínio. O KWTweet foi anotado por 15 anotadores e resultou em 7736 tweets anotados. Com base nesta informação, pudemos posteriormente avaliar a eficácia do YAKE! contra 9 baselines de extração de palavra-chave não supervisionados (TextRank, KP-Miner, SingleRank, PositionRank, TopicPageRank, MultipartiteRank, TopicRank, Rake e TF.IDF). Os resultados obtidos demonstram que o YAKE! tem um desempenho superior quando comparado com os seus competidores, provando-se assim a sua eficácia neste tipo de textos. Por fim, disponibilizamos uma demo que visa demonstrar o funcionamento do YAKE! Nesta plataforma web, os utilizadores têm a possibilidade de fazer uma pesquisa por utilizador ou hashtag e dessa forma obter as palavras chave mais relevantes através de uma nuvem de palavra

    Neural information extraction from natural language text

    Get PDF
    Natural language processing (NLP) deals with building computational techniques that allow computers to automatically analyze and meaningfully represent human language. With an exponential growth of data in this digital era, the advent of NLP-based systems has enabled us to easily access relevant information via a wide range of applications, such as web search engines, voice assistants, etc. To achieve it, a long-standing research for decades has been focusing on techniques at the intersection of NLP and machine learning. In recent years, deep learning techniques have exploited the expressive power of Artificial Neural Networks (ANNs) and achieved state-of-the-art performance in a wide range of NLP tasks. Being one of the vital properties, Deep Neural Networks (DNNs) can automatically extract complex features from the input data and thus, provide an alternative to the manual process of handcrafted feature engineering. Besides ANNs, Probabilistic Graphical Models (PGMs), a coupling of graph theory and probabilistic methods have the ability to describe causal structure between random variables of the system and capture a principled notion of uncertainty. Given the characteristics of DNNs and PGMs, they are advantageously combined to build powerful neural models in order to understand the underlying complexity of data. Traditional machine learning based NLP systems employed shallow computational methods (e.g., SVM or logistic regression) and relied on handcrafting features which is time-consuming, complex and often incomplete. However, deep learning and neural network based methods have recently shown superior results on various NLP tasks, such as machine translation, text classification, namedentity recognition, relation extraction, textual similarity, etc. These neural models can automatically extract an effective feature representation from training data. This dissertation focuses on two NLP tasks: relation extraction and topic modeling. The former aims at identifying semantic relationships between entities or nominals within a sentence or document. Successfully extracting the semantic relationships greatly contributes in building structured knowledge bases, useful in downstream NLP application areas of web search, question-answering, recommendation engines, etc. On other hand, the task of topic modeling aims at understanding the thematic structures underlying in a collection of documents. Topic modeling is a popular text-mining tool to automatically analyze a large collection of documents and understand topical semantics without actually reading them. In doing so, it generates word clusters (i.e., topics) and document representations useful in document understanding and information retrieval, respectively. Essentially, the tasks of relation extraction and topic modeling are built upon the quality of representations learned from text. In this dissertation, we have developed task-specific neural models for learning representations, coupled with relation extraction and topic modeling tasks in the realms of supervised and unsupervised machine learning paradigms, respectively. More specifically, we make the following contributions in developing neural models for NLP tasks: 1. Neural Relation Extraction: Firstly, we have proposed a novel recurrent neural network based architecture for table-filling in order to jointly perform entity and relation extraction within sentences. Then, we have further extended our scope of extracting relationships between entities across sentence boundaries, and presented a novel dependency-based neural network architecture. The two contributions lie in the supervised paradigm of machine learning. Moreover, we have contributed in building a robust relation extractor constrained by the lack of labeled data, where we have proposed a novel weakly-supervised bootstrapping technique. Given the contributions, we have further explored interpretability of the recurrent neural networks to explain their predictions for the relation extraction task. 2. Neural Topic Modeling: Besides the supervised neural architectures, we have also developed unsupervised neural models to learn meaningful document representations within topic modeling frameworks. Firstly, we have proposed a novel dynamic topic model that captures topics over time. Next, we have contributed in building static topic models without considering temporal dependencies, where we have presented neural topic modeling architectures that also exploit external knowledge, i.e., word embeddings to address data sparsity. Moreover, we have developed neural topic models that incorporate knowledge transfers using both the word embeddings and latent topics from many sources. Finally, we have shown improving neural topic modeling by introducing language structures (e.g., word ordering, local syntactic and semantic information, etc.) that deals with bag-of-words issues in traditional topic models. The class of proposed neural NLP models in this section are based on techniques at the intersection of PGMs, deep learning and ANNs. Here, the task of neural relation extraction employs neural networks to learn representations typically at the sentence level, without access to the broader document context. However, topic models have access to statistical information across documents. Therefore, we advantageously combine the two complementary learning paradigms in a neural composite model, consisting of a neural topic and a neural language model that enables us to jointly learn thematic structures in a document collection via the topic model, and word relations within a sentence via the language model. Overall, our research contributions in this dissertation extend NLP-based systems for relation extraction and topic modeling tasks with state-of-the-art performances

    Cross-Domain information extraction from scientific articles for research knowledge graphs

    Get PDF
    Today’s scholarly communication is a document-centred process and as such, rather inefficient. Fundamental contents of research papers are not accessible by computers since they are only present in unstructured PDF files. Therefore, current research infrastructures are not able to assist scientists appropriately in their core research tasks. This thesis addresses this issue and proposes methods to automatically extract relevant information from scientific articles for Research Knowledge Graphs (RKGs) that represent scholarly knowledge structured and interlinked. First, this thesis conducts a requirements analysis for an Open Research Knowledge Graph (ORKG). We present literature-related use cases of researchers that should be supported by an ORKG-based system and their specific requirements for the underlying ontology and instance data. Based on this analysis, the identified use cases are categorised into two groups: The first group of use cases needs manual or semi-automatic approaches for knowledge graph (KG) construction since they require high correctness of the instance data. The second group requires high completeness and can tolerate noisy instance data. Thus, this group needs automatic approaches for KG population. This thesis focuses on the second group of use cases and provides contributions for machine learning tasks that aim to support them. To assess the relevance of a research paper, scientists usually skim through titles, abstracts, introductions, and conclusions. An organised presentation of the articles' essential information would make this process more time-efficient. The task of sequential sentence classification addresses this issue by classifying sentences in an article in categories like research problem, used methods, or obtained results. To address this problem, we propose a novel unified cross-domain multi-task deep learning approach that makes use of datasets from different scientific domains (e.g. biomedicine and computer graphics) and varying structures (e.g. datasets covering either only abstracts or full papers). Our approach outperforms the state of the art on full paper datasets significantly while being competitive for datasets consisting of abstracts. Moreover, our approach enables the categorisation of sentences in a domain-independent manner. Furthermore, we present the novel task of domain-independent information extraction to extract scientific concepts from research papers in a domain-independent manner. This task aims to support the use cases find related work and get recommended articles. For this purpose, we introduce a set of generic scientific concepts that are relevant over ten domains in Science, Technology, and Medicine (STM) and release an annotated dataset of 110 abstracts from these domains. Since the annotation of scientific text is costly, we suggest an active learning strategy based on a state-of-the-art deep learning approach. The proposed method enables us to nearly halve the amount of required training data. Then, we extend this domain-independent information extraction approach with the task of \textit{coreference resolution}. Coreference resolution aims to identify mentions that refer to the same concept or entity. Baseline results on our corpus with current state-of-the-art approaches for coreference resolution showed that current approaches perform poorly on scientific text. Therefore, we propose a sequential transfer learning approach that exploits annotated datasets from non-academic domains. Our experimental results demonstrate that our approach noticeably outperforms the state-of-the-art baselines. Additionally, we investigate the impact of coreference resolution on KG population. We demonstrate that coreference resolution has a small impact on the number of resulting concepts in the KG, but improved its quality significantly. Consequently, using our domain-independent information extraction approach, we populate an RKG from 55,485 abstracts of the ten investigated STM domains. We show that every domain mainly uses its own terminology and that the populated RKG contains useful concepts. Moreover, we propose a novel approach for the task of \textit{citation recommendation}. This task can help researchers improve the quality of their work by finding or recommending relevant related work. Our approach exploits RKGs that interlink research papers based on mentioned scientific concepts. Using our automatically populated RKG, we demonstrate that the combination of information from RKGs with existing state-of-the-art approaches is beneficial. Finally, we conclude the thesis and sketch possible directions of future work.Die Kommunikation von Forschungsergebnissen erfolgt heutzutage in Form von Dokumenten und ist aus verschiedenen Gründen ineffizient. Wesentliche Inhalte von Forschungsarbeiten sind für Computer nicht zugänglich, da sie in unstrukturierten PDF-Dateien verborgen sind. Daher können derzeitige Forschungsinfrastrukturen Forschende bei ihren Kernaufgaben nicht angemessen unterstützen. Diese Arbeit befasst sich mit dieser Problemstellung und untersucht Methoden zur automatischen Extraktion von relevanten Informationen aus Forschungspapieren für Forschungswissensgraphen (Research Knowledge Graphs). Solche Graphen sollen wissenschaftliches Wissen maschinenlesbar strukturieren und verknüpfen. Zunächst wird eine Anforderungsanalyse für einen Open Research Knowledge Graph (ORKG) durchgeführt. Wir stellen literaturbezogene Anwendungsfälle von Forschenden vor, die durch ein ORKG-basiertes System unterstützt werden sollten, und deren spezifische Anforderungen an die zugrundeliegende Ontologie und die Instanzdaten. Darauf aufbauend werden die identifizierten Anwendungsfälle in zwei Gruppen eingeteilt: Die erste Gruppe von Anwendungsfällen benötigt manuelle oder halbautomatische Ansätze für die Konstruktion eines ORKG, da sie eine hohe Korrektheit der Instanzdaten erfordern. Die zweite Gruppe benötigt eine hohe Vollständigkeit der Instanzdaten und kann fehlerhafte Daten tolerieren. Daher erfordert diese Gruppe automatische Ansätze für die Konstruktion des ORKG. Diese Arbeit fokussiert sich auf die zweite Gruppe von Anwendungsfällen und schlägt Methoden für maschinelle Aufgabenstellungen vor, die diese Anwendungsfälle unterstützen können. Um die Relevanz eines Forschungsartikels effizient beurteilen zu können, schauen sich Forschende in der Regel die Titel, Zusammenfassungen, Einleitungen und Schlussfolgerungen an. Durch eine strukturierte Darstellung von wesentlichen Informationen des Artikels könnte dieser Prozess zeitsparender gestaltet werden. Die Aufgabenstellung der sequenziellen Satzklassifikation befasst sich mit diesem Problem, indem Sätze eines Artikels in Kategorien wie Forschungsproblem, verwendete Methoden oder erzielte Ergebnisse automatisch klassifiziert werden. In dieser Arbeit wird für diese Aufgabenstellung ein neuer vereinheitlichter Multi-Task Deep-Learning-Ansatz vorgeschlagen, der Datensätze aus verschiedenen wissenschaftlichen Bereichen (z. B. Biomedizin und Computergrafik) mit unterschiedlichen Strukturen (z. B. Datensätze bestehend aus Zusammenfassungen oder vollständigen Artikeln) nutzt. Unser Ansatz übertrifft State-of-the-Art-Verfahren der Literatur auf Benchmark-Datensätzen bestehend aus vollständigen Forschungsartikeln. Außerdem ermöglicht unser Ansatz die Klassifizierung von Sätzen auf eine domänenunabhängige Weise. Darüber hinaus stellen wir die neue Aufgabenstellung domänenübergreifende Informationsextraktion vor. Hierbei werden, unabhängig vom behandelten wissenschaftlichen Fachgebiet, inhaltliche Konzepte aus Forschungspapieren extrahiert. Damit sollen die Anwendungsfälle Finden von verwandten Arbeiten und Empfehlung von Artikeln unterstützt werden. Zu diesem Zweck führen wir eine Reihe von generischen wissenschaftlichen Konzepten ein, die in zehn Bereichen der Wissenschaft, Technologie und Medizin (STM) relevant sind, und veröffentlichen einen annotierten Datensatz von 110 Zusammenfassungen aus diesen Bereichen. Da die Annotation wissenschaftlicher Texte aufwändig ist, kombinieren wir ein Active-Learning-Verfahren mit einem aktuellen Deep-Learning-Ansatz, um die notwendigen Trainingsdaten zu reduzieren. Die vorgeschlagene Methode ermöglicht es uns, die Menge der erforderlichen Trainingsdaten nahezu zu halbieren. Anschließend erweitern wir unseren domänenunabhängigen Ansatz zur Informationsextraktion um die Aufgabe der Koreferenzauflösung. Die Auflösung von Koreferenzen zielt darauf ab, Erwähnungen zu identifizieren, die sich auf dasselbe Konzept oder dieselbe Entität beziehen. Experimentelle Ergebnisse auf unserem Korpus mit aktuellen Ansätzen zur Koreferenzauflösung haben gezeigt, dass diese bei wissenschaftlichen Texten unzureichend abschneiden. Daher schlagen wir eine Transfer-Learning-Methode vor, die annotierte Datensätze aus nicht-akademischen Bereichen nutzt. Die experimentellen Ergebnisse zeigen, dass unser Ansatz deutlich besser abschneidet als die bisherigen Ansätze. Darüber hinaus untersuchen wir den Einfluss der Koreferenzauflösung auf die Erstellung von Wissensgraphen. Wir zeigen, dass diese einen geringen Einfluss auf die Anzahl der resultierenden Konzepte in dem Wissensgraphen hat, aber die Qualität des Wissensgraphen deutlich verbessert. Mithilfe unseres domänenunabhängigen Ansatzes zur Informationsextraktion haben wir aus 55.485 Zusammenfassungen der zehn untersuchten STM-Domänen einen Forschungswissensgraphen erstellt. Unsere Analyse zeigt, dass jede Domäne hauptsächlich ihre eigene Terminologie verwendet und dass der erstellte Wissensgraph nützliche Konzepte enthält. Schließlich schlagen wir einen Ansatz für die Empfehlung von passenden Referenzen vor. Damit können Forschende einfacher relevante verwandte Arbeiten finden oder passende Empfehlungen erhalten. Unser Ansatz nutzt Forschungswissensgraphen, die Forschungsarbeiten mit in ihnen erwähnten wissenschaftlichen Konzepten verknüpfen. Wir zeigen, dass aktuelle Verfahren zur Empfehlung von Referenzen von zusätzlichen Informationen aus einem automatisch erstellten Wissensgraphen profitieren. Zum Schluss wird ein Fazit gezogen und ein Ausblick für mögliche zukünftige Arbeiten gegeben
    corecore