51 research outputs found

    Energy efficient cooperative computing in mobile wireless sensor networks

    Get PDF
    Advances in future computing to support emerging sensor applications are becoming more important as the need to better utilize computation and communication resources and make them energy efficient. As a result, it is predicted that intelligent devices and networks, including mobile wireless sensor networks (MWSN), will become the new interfaces to support future applications. In this paper, we propose a novel approach to minimize energy consumption of processing an application in MWSN while satisfying a certain completion time requirement. Specifically, by introducing the concept of cooperation, the logics and related computation tasks can be optimally partitioned, offloaded and executed with the help of peer sensor nodes, thus the proposed solution can be treated as a joint optimization of computing and networking resources. Moreover, for a network with multiple mobile wireless sensor nodes, we propose energy efficient cooperation node selection strategies to offer a tradeoff between fairness and energy consumption. Our performance analysis is supplemented by simulation results to show the significant energy saving of the proposed solution

    A Survey on Resource Management in IoT Operating Systems

    Get PDF
    Recently, the Internet of Things (IoT) concept has attracted a lot of attention due to its capability to translate our physical world into a digital cyber world with meaningful information. The IoT devices are smaller in size, sheer in number, contain less memory, use less energy, and have more computational capabilities. These scarce resources for IoT devices are powered by small operating systems (OSs) that are specially designed to support the IoT devices' diverse applications and operational requirements. These IoT OSs are responsible for managing the constrained resources of IoT devices efficiently and in a timely manner. In this paper, discussions on IoT devices and OS resource management are provided. In detail, the resource management mechanisms of the state-of-the-art IoT OSs, such as Contiki, TinyOS, and FreeRTOS, are investigated. The different dimensions of their resource management approaches (including process management, memory management, energy management, communication management, and file management) are studied, and their advantages and limitations are highlighted

    Unified Compact ECC-AES Co-Processor with Group-Key Support for IoT Devices in Wireless Sensor Networks

    Get PDF
    Security is a critical challenge for the effective expansion of all new emerging applications in the Internet of Things paradigm. Therefore, it is necessary to define and implement different mechanisms for guaranteeing security and privacy of data interchanged within the multiple wireless sensor networks being part of the Internet of Things. However, in this context, low power and low area are required, limiting the resources available for security and thus hindering the implementation of adequate security protocols. Group keys can save resources and communications bandwidth, but should be combined with public key cryptography to be really secure. In this paper, a compact and unified co-processor for enabling Elliptic Curve Cryptography along to Advanced Encryption Standard with low area requirements and Group-Key support is presented. The designed co-processor allows securing wireless sensor networks with independence of the communications protocols used. With an area occupancy of only 2101 LUTs over Spartan 6 devices from Xilinx, it requires 15% less area while achieving near 490% better performance when compared to cryptoprocessors with similar features in the literature

    Data collector for industrial sanding machines

    Get PDF
    The purpose of this thesis was to develop an IoT device for a company called Mirka Ltd. The IoT device is designed for data collection from sanding machine and sending data to the server for later analysis. The IoT device will be located next to a sanding machine, where it will monitor communication between devices. In this case, the data collection is done without sending any data request to the sanding machine. This kind of data collection won’t disturb the sanding machine’s performance. The sanding machine continuously produces data about the usage and conditions of the device. This data is received from built-in sensors which are located in the sanding machine’s circuit board. The IoT device is a data logger that will be attached to the Mirka’s AIROS sanding machine, which is controlled by a robot. Thesis is divided into theoretical, practical, data analysis and future development parts. In the theoretical part the IoT architecture, communication between devices and technologies concerning the communication are discussed. After the theoretical part focus is on the IoT device itself, including the developed program, devices and tools that are used. The last part is about testing, data analysis and future development that are related to the data we collected from real use of the IoT device. The IoT device is made using Raspberry Pi computer and 4G communication device. With the 4G device, IoT device is able to send data through the Internet to an external database, which is located in Mirka Ltd’s server. IoT device is set up and currently running in the Mirka Ltd’s workshop in Jepua. In the future, the intention is to include it to the AIROS end product.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Developing an Effective Detection Framework for Targeted Ransomware Attacks in Brownfield Industrial Internet of Things

    Full text link
    The Industrial Internet of Things (IIoT) is being interconnected with many critical industrial activities, creating major cyber security concerns. The key concern is with edge systems of Brownfield IIoT, where new devices and technologies are deployed to interoperate with legacy industrial control systems and leverage the benefits of IoT. These edge devices, such as edge gateways, have opened the way to advanced attacks such as targeted ransomware. Various pre-existing security solutions can detect and mitigate such attacks but are often ineffective due to the heterogeneous nature of the IIoT devices and protocols and their interoperability demands. Consequently, developing new detection solutions is essential. The key challenges in developing detection solutions for targeted ransomware attacks in IIoT systems include 1) understanding attacks and their behaviour, 2) designing accurate IIoT system models to test attacks, 3) obtaining realistic data representing IIoT systems' activities and connectivities, and 4) identifying attacks. This thesis provides important contributions to the research focusing on investigating targeted ransomware attacks against IIoT edge systems and developing a new detection framework. The first contribution is developing the world's first example of ransomware, specifically targeting IIoT edge gateways. The experiments' results demonstrate that such an attack is now possible on edge gateways. Also, the kernel-related activity parameters appear to be significant indicators of the crypto-ransomware attacks' behaviour, much more so than for similar attacks in workstations. The second contribution is developing a new holistic end-to-end IIoT security testbed (i.e., Brown-IIoTbed) that can be easily reproduced and reconfigured to support new processes and security scenarios. The results prove that Brown-IIoTbed operates efficiently in terms of its functions and security testing. The third contribution is generating a first-of-its-kind dataset tailored for IIoT systems covering targeted ransomware attacks and their activities, called X-IIoTID. The dataset includes connectivity- and device-agnostic features collected from various data sources. The final contribution is developing a new asynchronous peer-to-peer federated deep learning framework tailored for IIoT edge gateways for detecting targeted ransomware attacks. The framework's effectiveness has been evaluated against pre-existing datasets and the newly developed X-IIoTID dataset

    Trustworthy Edge Storage Orchestration in Intelligent Transportation Systems Using Reinforcement Learning

    Get PDF
    A large scale fast-growing data generated in intelligent transportation systems (ITS) has become a ponderous burden on the coordination of heterogeneous transportation networks, which makes the traditional cloud-centric storage architecture no longer satisfy new data analytics requirements. Meanwhile, the lack of storage trust between ITS devices and edge servers could lead to security risks in the data storage process. However, a unified data distributed storage architecture for ITS with intelligent management and trustworthiness is absent in the previous works. To address these challenges, this paper proposes a distributed trustworthy storage architecture with reinforcement learning in ITS, which also promotes edge services. We adopt an intelligent storage scheme to store data dynamically with reinforcement learning based on trustworthiness and popularity, which improves resource scheduling and storage space allocation. Besides, trapdoor hashing based identity authentication protocol is proposed to secure transportation network access. Due to the interaction between cooperative devices, our proposed trust evaluation mechanism is provided with extensibility in the various ITS. Simulation results demonstrate that our proposed distributed trustworthy storage architecture outperforms the compared ones in terms of trustworthiness and efficiency
    corecore