47 research outputs found

    A Developmental Neuro-Robotics Approach for Boosting the Recognition of Handwritten Digits

    Get PDF
    Developmental psychology and neuroimaging research identified a close link between numbers and fingers, which can boost the initial number knowledge in children. Recent evidence shows that a simulation of the children's embodied strategies can improve the machine intelligence too. This article explores the application of embodied strategies to convolutional neural network models in the context of developmental neurorobotics, where the training information is likely to be gradually acquired while operating rather than being abundant and fully available as the classical machine learning scenarios. The experimental analyses show that the proprioceptive information from the robot fingers can improve network accuracy in the recognition of handwritten Arabic digits when training examples and epochs are few. This result is comparable to brain imaging and longitudinal studies with young children. In conclusion, these findings also support the relevance of the embodiment in the case of artificial agents’ training and show a possible way for the humanization of the learning process, where the robotic body can express the internal processes of artificial intelligence making it more understandable for humans

    Huruf: An Application for Arabic Handwritten Character Recognition Using Deep Learning

    Full text link
    Handwriting Recognition has been a field of great interest in the Artificial Intelligence domain. Due to its broad use cases in real life, research has been conducted widely on it. Prominent work has been done in this field focusing mainly on Latin characters. However, the domain of Arabic handwritten character recognition is still relatively unexplored. The inherent cursive nature of the Arabic characters and variations in writing styles across individuals makes the task even more challenging. We identified some probable reasons behind this and proposed a lightweight Convolutional Neural Network-based architecture for recognizing Arabic characters and digits. The proposed pipeline consists of a total of 18 layers containing four layers each for convolution, pooling, batch normalization, dropout, and finally one Global average pooling and a Dense layer. Furthermore, we thoroughly investigated the different choices of hyperparameters such as the choice of the optimizer, kernel initializer, activation function, etc. Evaluating the proposed architecture on the publicly available 'Arabic Handwritten Character Dataset (AHCD)' and 'Modified Arabic handwritten digits Database (MadBase)' datasets, the proposed model respectively achieved an accuracy of 96.93% and 99.35% which is comparable to the state-of-the-art and makes it a suitable solution for real-life end-level applications.Comment: Accepted in 25th ICCIT (6 pages, 4 tables, 4 figures

    NeuroWrite: Predictive Handwritten Digit Classification using Deep Neural Networks

    Full text link
    The rapid evolution of deep neural networks has revolutionized the field of machine learning, enabling remarkable advancements in various domains. In this article, we introduce NeuroWrite, a unique method for predicting the categorization of handwritten digits using deep neural networks. Our model exhibits outstanding accuracy in identifying and categorising handwritten digits by utilising the strength of convolutional neural networks (CNNs) and recurrent neural networks (RNNs).In this article, we give a thorough examination of the data preparation methods, network design, and training methods used in NeuroWrite. By implementing state-of-the-art techniques, we showcase how NeuroWrite can achieve high classification accuracy and robust generalization on handwritten digit datasets, such as MNIST. Furthermore, we explore the model's potential for real-world applications, including digit recognition in digitized documents, signature verification, and automated postal code recognition. NeuroWrite is a useful tool for computer vision and pattern recognition because of its performance and adaptability.The architecture, training procedure, and evaluation metrics of NeuroWrite are covered in detail in this study, illustrating how it can improve a number of applications that call for handwritten digit classification. The outcomes show that NeuroWrite is a promising method for raising the bar for deep neural network-based handwritten digit recognition.Comment: 6 pages, 10 figure

    Does color modalities affect handwriting recognition? An empirical study on Persian handwritings using convolutional neural networks

    Full text link
    Most of the methods on handwritten recognition in the literature are focused and evaluated on Black and White (BW) image databases. In this paper we try to answer a fundamental question in document recognition. Using Convolutional Neural Networks (CNNs), as eye simulator, we investigate to see whether color modalities of handwritten digits and words affect their recognition accuracy or speed? To the best of our knowledge, so far this question has not been answered due to the lack of handwritten databases that have all three color modalities of handwritings. To answer this question, we selected 13,330 isolated digits and 62,500 words from a novel Persian handwritten database, which have three different color modalities and are unique in term of size and variety. Our selected datasets are divided into training, validation, and testing sets. Afterwards, similar conventional CNN models are trained with the training samples. While the experimental results on the testing set show that CNN on the BW digit and word images has a higher performance compared to the other two color modalities, in general there are no significant differences for network accuracy in different color modalities. Also, comparisons of training times in three color modalities show that recognition of handwritten digits and words in BW images using CNN is much more efficient
    corecore