85 research outputs found

    CNN and KPCA-Based Automated Feature Extraction for Real Time Driving Pattern Recognition

    Get PDF
    Driving conditions greatly affect the energy control and the fuel economy of a hybrid electric vehicle (HEV). In this paper, an automated feature extraction scheme based on convolution neural networks (CNNs) and Kernel PCA (KPCA) for real time driving pattern recognition (RTDPR) is proposed in order to achieve consistent performance of the energy management. Firstly, a dimension expanding strategy is performed to transform one-dimensional speed sequences to generate a two-dimensional dataset. Then, the transformed data is sent to the CNN and KPCA based feature extractor. Finally, the feature extractor automatically selects the most representative features for classification. To improve the generalization of CNN to a small sample dataset, the structure of the typical CNN is adjusted by adding the KPCA layer in order to reduce model parameters. The model is well trained and evaluated in simulation, and it is tested for RTDPR in the real world. Simulation and experimental results show that the proposed automated feature extraction strategy outperforms the conventional driving pattern recognition algorithms based on manually feature extraction, which has achieved the state-of-the-art recognition accuracy

    A LightGBM-Based EEG Analysis Method for Driver Mental States Classification

    Get PDF
    Fatigue driving can easily lead to road traffic accidents and bring great harm to individuals and families. Recently, electroencephalography- (EEG-) based physiological and brain activities for fatigue detection have been increasingly investigated. However, how to find an effective method or model to timely and efficiently detect the mental states of drivers still remains a challenge. In this paper, we combine common spatial pattern (CSP) and propose a light-weighted classifier, LightFD, which is based on gradient boosting framework for EEG mental states identification. ,e comparable results with traditional classifiers, such as support vector machine (SVM), convolutional neural network (CNN), gated recurrent unit (GRU), and large margin nearest neighbor (LMNN), show that the proposed model could achieve better classification performance, as well as the decision efficiency. Furthermore, we also test and validate that LightFD has better transfer learning performance in EEG classification of driver mental states. In summary, our proposed LightFD classifier has better performance in real-time EEG mental state prediction, and it is expected to have broad application prospects in practical brain-computer interaction (BCI)

    Classification of Physiological Signals for Emotion Recognition using IoT

    Get PDF
    Emotion recognition gains huge popularity now a days. Physiological signals provides an appropriate way to detect human emotion with the help of IoT. In this paper, a novel system is proposed which is capable of determining the emotional status using physiological parameters, including design specification and software implementation of the system. This system may have a vivid use in medicine (especially for emotionally challenged people), smart home etc. Various Physiological parameters to be measured includes, heart rate (HR), galvanic skin response (GSR), skin temperature etc. To construct the proposed system the measured physiological parameters were feed to the neural networks which further classify the data in various emotional states, mainly in anger, happy, sad, joy. This work recognized the correlation between human emotions and change in physiological parameters with respect to their emotion

    Analysis of Road-User Interaction by Extraction of Driver Behavior Features Using Deep Learning

    Get PDF
    In this study, an improved deep learning model is proposed to explore the complex interactions between the road environment and driver's behaviour throughout the generation of a graphical representation. The proposed model consists of an unsupervised Denoising Stacked Autoencoder (SDAE) able to provide output layers in RGB colors. The dataset comes from an experimental driving test where kinematic measures were tracked with an in-vehicle GPS device. The graphical outcomes reveal the method ability to efficiently detect patterns of simple driving behaviors, as well as the road environment complexity and some events encountered along the path

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    Recognition and Evaluation of Heart Arrhythmias via a General Sparse Neural Network

    Get PDF
    In clinical use, an electrocardiogram (ECG) is an essential medical tool for assessing heart arrhythmias. Thousands of human beings worldwide are affected by different cardiac problems nowadays. As a consequence, studying the features of the ECG pattern is critical for detecting a wide range of cardiac diseases. The ECG is a test which assesses the intensity of the electrical impulses in the circulatory system. In the present investigation, detection and examination of arrhythmias in the heart on the  system using GSNNs (General sparsed neural network classifier) can be carried out[1]. In this paper, the methodologies of support vector regression(SVR), neural mode decomposition(NMD), Artificial Neural Network (ANN), Support Vector Machine(SVM) and are examined. To assess the suggested structure, three distinct ECG waveform situations are chosen from the MIT-BIH arrhythmia collection. The main objective of this assignment is to create a simple, accurate, and simply adaptable approach for classifying the three distinct heart diseases chosen. The wavelet transform Db4 is used in the present paper to obtain several features from an ECG signal. The suggested setup was created using the MATLAB programme. The algorithms suggested are 98% accurate for forecasting cardiac arrhythmias, which is greater than prior techniques

    Signal Processing Using Non-invasive Physiological Sensors

    Get PDF
    Non-invasive biomedical sensors for monitoring physiological parameters from the human body for potential future therapies and healthcare solutions. Today, a critical factor in providing a cost-effective healthcare system is improving patients' quality of life and mobility, which can be achieved by developing non-invasive sensor systems, which can then be deployed in point of care, used at home or integrated into wearable devices for long-term data collection. Another factor that plays an integral part in a cost-effective healthcare system is the signal processing of the data recorded with non-invasive biomedical sensors. In this book, we aimed to attract researchers who are interested in the application of signal processing methods to different biomedical signals, such as an electroencephalogram (EEG), electromyogram (EMG), functional near-infrared spectroscopy (fNIRS), electrocardiogram (ECG), galvanic skin response, pulse oximetry, photoplethysmogram (PPG), etc. We encouraged new signal processing methods or the use of existing signal processing methods for its novel application in physiological signals to help healthcare providers make better decisions

    Human activity recognition using wearable sensors: a deep learning approach

    Get PDF
    In the past decades, Human Activity Recognition (HAR) grabbed considerable research attentions from a wide range of pattern recognition and human–computer interaction researchers due to its prominent applications such as smart home health care. The wealth of information requires efficient classification and analysis methods. Deep learning represents a promising technique for large-scale data analytics. There are various ways of using different sensors for human activity recognition in a smartly controlled environment. Among them, physical human activity recognition through wearable sensors provides valuable information about an individual’s degree of functional ability and lifestyle. There is abundant research that works upon real time processing and causes more power consumption of mobile devices. Mobile phones are resource-limited devices. It is a thought-provoking task to implement and evaluate different recognition systems on mobile devices. This work proposes a Deep Belief Network (DBN) model for successful human activity recognition. Various experiments are performed on a real-world wearable sensor dataset to verify the effectiveness of the deep learning algorithm. The results show that the proposed DBN performs competitively in comparison with other algorithms and achieves satisfactory activity recognition performance. Some open problems and ideas are also presented and should be investigated as future research

    Surface Electromyography and Artificial Intelligence for Human Activity Recognition - A Systematic Review on Methods, Emerging Trends Applications, Challenges, and Future Implementation

    Get PDF
    Human activity recognition (HAR) has become increasingly popular in recent years due to its potential to meet the growing needs of various industries. Electromyography (EMG) is essential in various clinical and biological settings. It is a metric that helps doctors diagnose conditions that affect muscle activation patterns and monitor patients’ progress in rehabilitation, disease diagnosis, motion intention recognition, etc. This review summarizes the various research papers based on HAR with EMG. Over recent years, the integration of Artificial Intelligence (AI) has catalyzed remarkable advancements in the classification of biomedical signals, with a particular focus on EMG data. Firstly, this review meticulously curates a wide array of research papers that have contributed significantly to the evolution of EMG-based activity recognition. By surveying the existing literature, we provide an insightful overview of the key findings and innovations that have propelled this field forward. It explore the various approaches utilized for preprocessing EMG signals, including noise reduction, baseline correction, filtering, and normalization, ensure that the EMG data is suitably prepared for subsequent analysis. In addition, we unravel the multitude of techniques employed to extract meaningful features from raw EMG data, encompassing both time-domain and frequency-domain features. These techniques are fundamental to achieving a comprehensive characterization of muscle activity patterns. Furthermore, we provide an extensive overview of both Machine Learning (ML) and Deep Learning (DL) classification methods, showcasing their respective strengths, limitations, and real-world applications in recognizing diverse human activities from EMG signals. In examining the hardware infrastructure for HAR with EMG, the synergy between hardware and software is underscored as paramount for enabling real-time monitoring. Finally, we also discovered open issues and future research direction that may point to new lines of inquiry for ongoing research toward EMG-based detection.publishedVersio
    • …
    corecore