139,277 research outputs found

    Connecting the dots for real-time LiDAR-based object detection with YOLO

    Full text link
    © 2018 Australasian Robotics and Automation Association. All rights reserved. In this paper we introduce a generic method for people and vehicle detection using LiDAR data only, leveraging a pre-trained Convolutional Neural Network (CNN) from the RGB domain. Typically with machine learning algorithms, there is an inherent trade-off between the amount of training data available and the need for engineered features. The current state-of-the-art object detection and classification heavily rely on deep CNNs trained on enormous RGB image datasets. To take advantage of this inbuilt knowledge, we propose to fine-tune You only look once (YOLO) network transferring its understanding about object shapes to upsampled LiDAR images. Our method creates a dense depth/intensity map, which highlights object contours, from the 3D-point cloud of a LiDAR scan. The proposed method is hardware agnostic, hence can be used with any LiDAR data, independently on the number of channels or beams. Overall, the proposed pipeline exploits the notable similarity between upsampled LiDAR images and RGB images preventing the need to train a deep CNN from scratch. This transfer learning makes our method data efficient while avoiding the creation of heavily engineered features. Evaluation results show that our proposed LiDAR-only detection model has equivalent performance to its RGB-only counterpart

    Measuring Possible Future Selves: Using Natural Language Processing for Automated Analysis of Posts about Life Concerns

    Get PDF
    Individuals have specific perceptions regarding their lives pertaining to how well they are doing in particular life domains, what their ideas are, and what to pursue in the future. These concepts are called possible future selves (PFS), a schema that contains the ideas of people, who they currently are, and who they wish to be in the future. The goal of this research project is to create a program to capture PFS using natural language processing. This program will allow automated analysis to measure people's perceptions and goals in a particular life domain and assess their view of the importance regarding their thoughts on each part of their PFS. The data used in this study were adopted from Kennard, Willis, Robinson, and Knobloch-Westerwick (2015) in which 214 women, aged between 21-35 years, viewed magazine portrayals of women in gender-congruent and gender-incongruent roles. The participants were prompted to write about their PFS with the questions: "Over the past 7 days, how much have you thought about your current life situation and your future? What were your thoughts? How much have you thought about your goals in life and your relationships? What were your thoughts?" The text PFS responses were then coded for mentions of different life domains and the emotions explicitly expressed from the text-data by human coders. Combinations of machine learning techniques were utilized to show the robustness of machine learning in predicting PFS. Long Short-Term Memory networks (LSTM), Convolutional Neural Networks (CNN), and decision trees were used in the ensemble learning of the machine learning model. Two different training and evaluation methods were used to find the most optimal machine learning approach in analyzing PFS. The machine learning approach was found successful in predicting PFS with high accuracy, labeling a person's concerns over PFS the same as human coders have done in The Allure of Aphrodite. While the models were inaccurate in spotting some measures, for example labeling a person's career concern in the present with around 60% accuracy, it was accurate finding a concern in a person's past romantic life with above 95% accuracy. Overall, the accuracy was found to be around 83% for life-domain concerns.Undergraduate Research Scholarship by the College of EngineeringNo embargoAcademic Major: Computer Science and Engineerin
    • …
    corecore