488 research outputs found

    Renyi entropies as a measure of the complexity of counting problems

    Full text link
    Counting problems such as determining how many bit strings satisfy a given Boolean logic formula are notoriously hard. In many cases, even getting an approximate count is difficult. Here we propose that entanglement, a common concept in quantum information theory, may serve as a telltale of the difficulty of counting exactly or approximately. We quantify entanglement by using Renyi entropies S(q), which we define by bipartitioning the logic variables of a generic satisfiability problem. We conjecture that S(q\rightarrow 0) provides information about the difficulty of counting solutions exactly, while S(q>0) indicates the possibility of doing an efficient approximate counting. We test this conjecture by employing a matrix computing scheme to numerically solve #2SAT problems for a large number of uniformly distributed instances. We find that all Renyi entropies scale linearly with the number of variables in the case of the #2SAT problem; this is consistent with the fact that neither exact nor approximate efficient algorithms are known for this problem. However, for the negated (disjunctive) form of the problem, S(q\rightarrow 0) scales linearly while S(q>0) tends to zero when the number of variables is large. These results are consistent with the existence of fully polynomial-time randomized approximate algorithms for counting solutions of disjunctive normal forms and suggests that efficient algorithms for the conjunctive normal form may not exist.Comment: 13 pages, 4 figure

    An Atypical Survey of Typical-Case Heuristic Algorithms

    Full text link
    Heuristic approaches often do so well that they seem to pretty much always give the right answer. How close can heuristic algorithms get to always giving the right answer, without inducing seismic complexity-theoretic consequences? This article first discusses how a series of results by Berman, Buhrman, Hartmanis, Homer, Longpr\'{e}, Ogiwara, Sch\"{o}ening, and Watanabe, from the early 1970s through the early 1990s, explicitly or implicitly limited how well heuristic algorithms can do on NP-hard problems. In particular, many desirable levels of heuristic success cannot be obtained unless severe, highly unlikely complexity class collapses occur. Second, we survey work initiated by Goldreich and Wigderson, who showed how under plausible assumptions deterministic heuristics for randomized computation can achieve a very high frequency of correctness. Finally, we consider formal ways in which theory can help explain the effectiveness of heuristics that solve NP-hard problems in practice.Comment: This article is currently scheduled to appear in the December 2012 issue of SIGACT New

    Simplest random K-satisfiability problem

    Full text link
    We study a simple and exactly solvable model for the generation of random satisfiability problems. These consist of ÎłN\gamma N random boolean constraints which are to be satisfied simultaneously by NN logical variables. In statistical-mechanics language, the considered model can be seen as a diluted p-spin model at zero temperature. While such problems become extraordinarily hard to solve by local search methods in a large region of the parameter space, still at least one solution may be superimposed by construction. The statistical properties of the model can be studied exactly by the replica method and each single instance can be analyzed in polynomial time by a simple global solution method. The geometrical/topological structures responsible for dynamic and static phase transitions as well as for the onset of computational complexity in local search method are thoroughly analyzed. Numerical analysis on very large samples allows for a precise characterization of the critical scaling behaviour.Comment: 14 pages, 5 figures, to appear in Phys. Rev. E (Feb 2001). v2: minor errors and references correcte

    CNF Satisfiability in a Subspace and Related Problems

    Get PDF
    We introduce the problem of finding a satisfying assignment to a CNF formula that must further belong to a prescribed input subspace. Equivalent formulations of the problem include finding a point outside a union of subspaces (the Union-of-Subspace Avoidance (USA) problem), and finding a common zero of a system of polynomials over ?? each of which is a product of affine forms. We focus on the case of k-CNF formulas (the k-Sub-Sat problem). Clearly, k-Sub-Sat is no easier than k-SAT, and might be harder. Indeed, via simple reductions we show that 2-Sub-Sat is NP-hard, and W[1]-hard when parameterized by the co-dimension of the subspace. We also prove that the optimization version Max-2-Sub-Sat is NP-hard to approximate better than the trivial 3/4 ratio even on satisfiable instances. On the algorithmic front, we investigate fast exponential algorithms which give non-trivial savings over brute-force algorithms. We give a simple branching algorithm with running time (1.5)^r for 2-Sub-Sat, where r is the subspace dimension, as well as an O^*(1.4312)? time algorithm where n is the number of variables. Turning to k-Sub-Sat for k ? 3, while known algorithms for solving a system of degree k polynomial equations already imply a solution with running time ? 2^{r(1-1/2k)}, we explore a more combinatorial approach. Based on an analysis of critical variables (a key notion underlying the randomized k-SAT algorithm of Paturi, Pudlak, and Zane), we give an algorithm with running time ? {n choose {?t}} 2^{n-n/k} where n is the number of variables and t is the co-dimension of the subspace. This improves upon the running time of the polynomial equations approach for small co-dimension. Our combinatorial approach also achieves polynomial space in contrast to the algebraic approach that uses exponential space. We also give a PPZ-style algorithm for k-Sub-Sat with running time ? 2^{n-n/2k}. This algorithm is in fact oblivious to the structure of the subspace, and extends when the subspace-membership constraint is replaced by any constraint for which partial satisfying assignments can be efficiently completed to a full satisfying assignment. Finally, for systems of O(n) polynomial equations in n variables over ??, we give a fast exponential algorithm when each polynomial has bounded degree irreducible factors (but can otherwise have large degree) using a degree reduction trick
    • …
    corecore