66 research outputs found

    Neuro-memristive Circuits for Edge Computing: A review

    Full text link
    The volume, veracity, variability, and velocity of data produced from the ever-increasing network of sensors connected to Internet pose challenges for power management, scalability, and sustainability of cloud computing infrastructure. Increasing the data processing capability of edge computing devices at lower power requirements can reduce several overheads for cloud computing solutions. This paper provides the review of neuromorphic CMOS-memristive architectures that can be integrated into edge computing devices. We discuss why the neuromorphic architectures are useful for edge devices and show the advantages, drawbacks and open problems in the field of neuro-memristive circuits for edge computing

    Hierarchical Temporal Memory using Memristor Networks: A Survey

    Full text link
    This paper presents a survey of the currently available hardware designs for implementation of the human cortex inspired algorithm, Hierarchical Temporal Memory (HTM). In this review, we focus on the state of the art advances of memristive HTM implementation and related HTM applications. With the advent of edge computing, HTM can be a potential algorithm to implement on-chip near sensor data processing. The comparison of analog memristive circuit implementations with the digital and mixed-signal solutions are provided. The advantages of memristive HTM over digital implementations against performance metrics such as processing speed, reduced on-chip area and power dissipation are discussed. The limitations and open problems concerning the memristive HTM, such as the design scalability, sneak currents, leakage, parasitic effects, lack of the analog learning circuits implementations and unreliability of the memristive devices integrated with CMOS circuits are also discussed

    High-Speed CMOS-Free Purely Spintronic Asynchronous Recurrent Neural Network

    Full text link
    Neuromorphic computing systems overcome the limitations of traditional von Neumann computing architectures. These computing systems can be further improved upon by using emerging technologies that are more efficient than CMOS for neural computation. Recent research has demonstrated memristors and spintronic devices in various neural network designs boost efficiency and speed. This paper presents a biologically inspired fully spintronic neuron used in a fully spintronic Hopfield RNN. The network is used to solve tasks, and the results are compared against those of current Hopfield neuromorphic architectures which use emerging technologies
    corecore