114 research outputs found

    Design trade-offs for cost-effective multimode fiber channel equalizers in optical data center applications

    Get PDF
    A 10-Gb/s transmission over 1-km standard multimode fiber for data center applications is casestudied in terms of the design considerations for low-complexity and cost-effective equalizers which can increase the reach of multimode fiber links

    State of the art in chip-to-chip interconnects

    Get PDF
    This thesis presents a study of short-range links for chips mounted in the same package, on printed circuit boards or interposers. Implemented in CMOS technology between 7 and 250 nm, with links that operate at a data rate between 0,4 and 112 Gb/s/pin and with energy efficiencies from 0,3 to 67,7 pJ/bit. The links operate on channels with an attenuation lower than 50 dB. A comparison is made with graphical representations between the different articles that shows the correlation between the different essential metrics of chip-to-chip interconnects, as well as its evolution over the last 20 years.Esta tesis presenta un estudio de enlaces de corto alcance para chips montados en un mismo paquete, en placas de circuito impreso o intercaladores. Implementado en tecnologรญa CMOS entre 7 y 250 nm, con enlaces que operan a una velocidad de datos entre 0,4 y 112 Gb/s/pin y con eficiencias energรฉticas de 0,3 a 67,7 pJ/bit. Los enlaces operan en canales con una atenuaciรณn inferior a 50 dB. Se realiza una comparaciรณn con representaciones grรกficas entre los diferentes artรญculos que muestra la correlaciรณn entre las distintas mรฉtricas esenciales de las interconexiones chip a chip, asรญ como su evoluciรณn en los รบltimos 20 aรฑos.Aquesta tesi presenta un estudi d'enllaรงos de curt abast per a xips muntats en el mateix paquet, en plaques de circuits impresos o interposers. Implementat en tecnologia CMOS entre 7 i 250 nm, amb enllaรงos que funcionen a una velocitat de dades entre 0,4 i 112 Gb/s/pin i amb eficiรจncies energรจtiques de 0,3 a 67,7 pJ/bit. Els enllaรงos funcionen en canals amb una atenuaciรณ inferior a 50 dB. Es fa una comparaciรณ amb representacions grร fiques entre els diferents articles que mostra la correlaciรณ entre les diferents mรจtriques essencials d'interconnexions xip a xip, aixรญ com la seva evoluciรณ en els darrers 20 anys

    Wideband integrated circuits for optical communication systems

    Get PDF
    The exponential growth of internet traffic drives datacenters to constantly improvetheir capacity. Several research and industrial organizations are aiming towardsTbps Ethernet and beyond, which brings new challenges to the field of high-speedbroadband electronic circuit design. With datacenters rapidly becoming significantenergy consumers on the global scale, the energy efficiency of the optical interconnecttransceivers takes a primary role in the development of novel systems. Furthermore,wideband optical links are finding application inside very high throughput satellite(V/HTS) payloads used in the ever-expanding cloud of telecommunication satellites,enabled by the maturity of the existing fiber based optical links and the hightechnology readiness level of radiation hardened integrated circuit processes. Thereare several additional challenges unique in the design of a wideband optical system.The overall system noise must be optimized for the specific application, modulationscheme, PD and laser characteristics. Most state-of-the-art wideband circuits are builton high-end semiconductor SiGe and InP technologies. However, each technologydemands specific design decisions to be made in order to get low noise, high energyefficiency and adequate bandwidth. In order to overcome the frequency limitationsof the optoelectronic components, bandwidth enhancement and channel equalizationtechniques are used. In this work various blocks of optical communication systems aredesigned attempting to tackle some of the aforementioned challenges. Two TIA front-end topologies with 133 GHz bandwidth, a CB and a CE with shunt-shunt feedback,are designed and measured, utilizing a state-of-the-art 130 nm InP DHBT technology.A modular equalizer block built in 130 nm SiGe HBT technology is presented. Threeultra-wideband traveling wave amplifiers, a 4-cell, a single cell and a matrix single-stage, are designed in a 250 nm InP DHBT process to test the limits of distributedamplification. A differential VCSEL driver circuit is designed and integrated in a4x 28 Gbps transceiver system for intra-satellite optical communications based in arad-hard 130nm SiGe process

    Broadband Receiver Electronic Circuits for Fiber-Optical Communication Systems

    Get PDF
    The exponential growth of internet traffic drives datacenters to constantly improve their capacity. As the copper based network infrastructure is being replaced by fiber-optical interconnects, new industrial standards for higher datarates are required. Several research and industrial organizations are aiming towards 400 Gb Ethernet and beyond, which brings new challenges to the field of high-speed broadband electronic circuit design. Replacing OOK with higher M-ary modulation formats and using higher datarates increases network capacity but at the cost of power. With datacenters rapidly becoming significant energy consumers on the global scale, the energy efficiency of the optical interconnect transceivers takes a primary role in the development of novel systems. There are several additional challenges unique in the design of a broadband shortreach fiber-optical receiver system. The sensitivity of the receiver depends on the noise performance of the PD and the electronics. The overall system noise must be optimized for the specific application, modulation scheme, PD and VCSEL characteristics. The topology of the transimpedance amplifier affects the noise and frequency response of the PD, so the system must be optimized as a whole. Most state-of-the-art receivers are built on high-end semiconductor SiGe and InP technologies. However, there are still several design decisions to be made in order to get low noise, high energy efficiency and adequate bandwidth. In order to overcome the frequency limitations of the optoelectronic components, bandwidth enhancement and channel equalization techniques are used. In this work several different blocks of a receiver system are designed and characterized. A broadband, 50 GHz bandwidth CB-based TIA and a tunable gain equalizer are designed in a 130 nm SiGe BiCMOS process. An ultra-broadband traveling wave amplifier is presented, based on a 250 nm InP DHBT technology demonstrating a 207 GHz bandwidth. Two TIA front-end topologies with 133 GHz bandwidth, a CB and a CE with shunt-shunt feedback, based on a 130 nm InP DHBT technology are designed and compared

    ํ†ต๊ณ„์  ์ฃผํŒŒ์ˆ˜ ๊ฒ€์ถœ๊ธฐ ๊ธฐ๋ฐ˜ ๊ธฐ์ค€ ์ฃผํŒŒ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š๋Š” ํด๋ก ๋ฐ ๋ฐ์ดํ„ฐ ๋ณต์› ํšŒ๋กœ์˜ ์„ค๊ณ„ ๋ฐฉ๋ฒ•๋ก 

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2022. 8. ์ •๋•๊ท .In this thesis, a design of a high-speed, power-efficient, wide-range clock and data recovery (CDR) without a reference clock is proposed. A frequency acquisition scheme using a stochastic frequency detector (SFD) based on the Alexander phase detector (PD) is utilized for the referenceless operation. Pat-tern histogram analysis is presented to analyze the frequency acquisition behavior of the SFD and verified by simulation. Based on the information obtained by pattern histogram analysis, SFD using autocovariance is proposed. With a direct-proportional path and a digital integral path, the proposed referenceless CDR achieves frequency lock at all measurable conditions, and the measured frequency acquisition time is within 7ฮผs. The prototype chip has been fabricated in a 40-nm CMOS process and occupies an active area of 0.032 mm2. The proposed referenceless CDR achieves the BER of less than 10-12 at 32 Gb/s and exhibits an energy efficiency of 1.15 pJ/b at 32 Gb/s with a 1.0 V supply.๋ณธ ๋…ผ๋ฌธ์€ ๊ธฐ์ค€ ํด๋Ÿญ์ด ์—†๋Š” ๊ณ ์†, ์ €์ „๋ ฅ, ๊ด‘๋Œ€์—ญ์œผ๋กœ ๋™์ž‘ํ•˜๋Š” ํด๋Ÿญ ๋ฐ ๋ฐ์ดํ„ฐ ๋ณต์›ํšŒ๋กœ์˜ ์„ค๊ณ„๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๊ธฐ์ค€ ํด๋Ÿญ์ด ์—†๋Š” ๋™์ž‘์„ ์œ„ํ•ด์„œ ์•Œ๋ ‰์‚ฐ๋” ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ์— ๊ธฐ๋ฐ˜ํ•œ ํ†ต๊ณ„์  ์ฃผํŒŒ์ˆ˜ ๊ฒ€์ถœ๊ธฐ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ์ฃผํŒŒ์ˆ˜ ํš๋“ ๋ฐฉ์‹์ด ์‚ฌ์šฉ๋œ๋‹ค. ํ†ต๊ณ„์  ์ฃผํŒŒ์ˆ˜ ๊ฒ€์ถœ๊ธฐ์˜ ์ฃผํŒŒ์ˆ˜ ์ถ”์  ์–‘์ƒ์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด ํŒจํ„ด ํžˆ์Šคํ† ๊ทธ๋žจ ๋ถ„์„ ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•˜์˜€๊ณ  ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ๊ฒ€์ฆํ•˜์˜€๋‹ค. ํŒจํ„ด ํžˆ์Šคํ† ๊ทธ๋žจ ๋ถ„์„์„ ํ†ตํ•ด ์–ป์€ ์ •๋ณด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ž๊ธฐ๊ณต๋ถ„์‚ฐ์„ ์ด์šฉํ•œ ํ†ต๊ณ„์  ์ฃผํŒŒ์ˆ˜ ๊ฒ€์ถœ๊ธฐ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ง์ ‘ ๋น„๋ก€ ๊ฒฝ๋กœ์™€ ๋””์ง€ํ„ธ ์ ๋ถ„ ๊ฒฝ๋กœ๋ฅผ ํ†ตํ•ด ์ œ์•ˆ๋œ ๊ธฐ์ค€ ํด๋Ÿญ์ด ์—†๋Š” ํด๋Ÿญ ๋ฐ ๋ฐ์ดํ„ฐ ๋ณต์›ํšŒ๋กœ๋Š” ๋ชจ๋“  ์ธก์ • ๊ฐ€๋Šฅํ•œ ์กฐ๊ฑด์—์„œ ์ฃผํŒŒ์ˆ˜ ์ž ๊ธˆ์„ ๋‹ฌ์„ฑํ•˜๋Š” ๋ฐ ์„ฑ๊ณตํ•˜์˜€๊ณ , ๋ชจ๋“  ๊ฒฝ์šฐ์—์„œ ์ธก์ •๋œ ์ฃผํŒŒ์ˆ˜ ์ถ”์  ์‹œ๊ฐ„์€ 7ฮผs ์ด๋‚ด์ด๋‹ค. 40-nm CMOS ๊ณต์ •์„ ์ด์šฉํ•˜์—ฌ ๋งŒ๋“ค์–ด์ง„ ์นฉ์€ 0.032 mm2์˜ ๋ฉด์ ์„ ์ฐจ์ง€ํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” ํด๋Ÿญ ๋ฐ ๋ฐ์ดํ„ฐ ๋ณต์›ํšŒ๋กœ๋Š” 32 Gb/s์˜ ์†๋„์—์„œ ๋น„ํŠธ์—๋Ÿฌ์œจ 10-12 ์ดํ•˜๋กœ ๋™์ž‘ํ•˜์˜€๊ณ , ์—๋„ˆ์ง€ ํšจ์œจ์€ 32Gb/s์˜ ์†๋„์—์„œ 1.0V ๊ณต๊ธ‰์ „์••์„ ์‚ฌ์šฉํ•˜์—ฌ 1.15 pJ/b์„ ๋‹ฌ์„ฑํ•˜์˜€๋‹ค.CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 THESIS ORGANIZATION 13 CHAPTER 2 BACKGROUNDS 14 2.1 CLOCKING ARCHITECTURES IN SERIAL LINK INTERFACE 14 2.2 GENERAL CONSIDERATIONS FOR CLOCK AND DATA RECOVERY 24 2.2.1 OVERVIEW 24 2.2.2 JITTER 26 2.2.3 CDR JITTER CHARACTERISTICS 33 2.3 CDR ARCHITECTURES 39 2.3.1 PLL-BASED CDR โ€“ WITH EXTERNAL REFERENCE CLOCK 39 2.3.2 DLL/PI-BASED CDR 44 2.3.3 PLL-BASED CDR โ€“ WITHOUT EXTERNAL REFERENCE CLOCK 47 2.4 FREQUENCY ACQUISITION SCHEME 50 2.4.1 TYPICAL FREQUENCY DETECTORS 50 2.4.1.1 DIGITAL QUADRICORRELATOR FREQUENCY DETECTOR 50 2.4.1.2 ROTATIONAL FREQUENCY DETECTOR 54 2.4.2 PRIOR WORKS 56 CHAPTER 3 DESIGN OF THE REFERENCELESS CDR USING SFD 58 3.1 OVERVIEW 58 3.2 PROPOSED FREQUENCY DETECTOR 62 3.2.1 MOTIVATION 62 3.2.2 PATTERN HISTOGRAM ANALYSIS 68 3.2.3 INTRODUCTION OF AUTOCOVARIANCE TO STOCHASTIC FREQUENCY DETECTOR 75 3.3 CIRCUIT IMPLEMENTATION 83 3.3.1 IMPLEMENTATION OF THE PROPOSED REFERENCELESS CDR 83 3.3.2 CONTINUOUS-TIME LINEAR EQUALIZER (CTLE) 85 3.3.3 DIGITALLY-CONTROLLED OSCILLATOR (DCO) 87 3.4 MEASUREMENT RESULTS 89 CHAPTER 4 CONCLUSION 99 APPENDIX A DETAILED FREQUENCY ACQUISITION WAVEFORMS OF THE PROPOSED SFD 100 BIBLIOGRAPHY 108 ์ดˆ ๋ก 122๋ฐ•

    ์˜คํ”„์…‹ ์ œ๊ฑฐ๊ธฐ์˜ ์ ์‘ ์ œ์–ด ๋“ฑํ™”๊ธฐ์™€ ๋ณด์šฐ-๋ ˆ์ดํŠธ ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ๋ฅผ ํ™œ์šฉํ•œ ์ˆ˜์‹ ๊ธฐ ์„ค๊ณ„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2021.8. ์—ผ์ œ์™„.In this thesis, designs of high-speed, low-power wireline receivers (RX) are explained. To be specific, the circuit techniques of DC offset cancellation, merged-summer DFE, stochastic Baud-rate CDR, and the phase detector (PD) for multi-level signal are proposed. At first, an RX with adaptive offset cancellation (AOC) and merged summer decision-feedback equalizer (DFE) is proposed. The proposed AOC engine removes the random DC offset of the data path by examining the random data stream's sampled data and edge outputs. In addition, the proposed RX incorporates a shared-summer DFE in a half-rate structure to reduce power dissipation and hardware complexity of the adaptive equalizer. A prototype chip fabricated in 40 nm CMOS technology occupies an active area of 0.083 mm2. Thanks to the AOC engine, the proposed RX achieves the BER of less than 10-12 in a wide range of data rates: 1.62-10 Gb/s. The proposed RX consumes 18.6 mW at 10 Gb/s over a channel with a 27 dB loss at 5 GHz, exhibiting a figure-of-merit of 0.068 pJ/b/dB. Secondly, a 40 nm CMOS RX with Baud-rate phase-detector (BRPD) is proposed. The RX includes two PDs: the BRPD employing the stochastic technique and the BRPD suitable for multi-level signals. Thanks to the Baud-rate CDRโ€™s advantage, by not using an edge-sampling clock, the proposed CDR can reduce the power consumption by lowering the hardware complexity. Besides, the proposed stochastic phase detector (SPD) tracks an optimal phase-locking point that maximizes the vertical eye opening. Furthermore, despite residual inter-symbol interference, proposed BRPD for multi-level signal secures vertical eye margin, which is especially vulnerable in the multi-level signal. Besides, the proposed BRPD has a unique lock point with an adaptive DFE, unlike conventional Mueller-Muller PD. A prototype chip fabricated in 40 nm CMOS technology occupies an active area of 0.24 mm2. The proposed PAM-4 RX achieves the bit-error-rate less than 10-11 in 48 Gb/s and the power efficiency of 2.42 pJ/b.๋ณธ ๋…ผ๋ฌธ์€ ๊ณ ์†, ์ €์ „๋ ฅ์œผ๋กœ ๋™์ž‘ํ•˜๋Š” ์œ ์„  ์ˆ˜์‹ ๊ธฐ์˜ ์„ค๊ณ„์— ๋Œ€ํ•ด ์„ค๋ช…ํ•˜๊ณ  ์žˆ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ ๋งํ•˜๋ฉด, ์˜คํ”„์…‹ ์ƒ์‡„, ๋ณ‘ํ•ฉ๋œ ์„œ๋จธ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฐ์ • ํ”ผ๋“œ๋ฐฑ ๋“ฑํ™”๊ธฐ ๊ธฐ์ˆ , ํ™•๋ฅ ์  ๋ณด์šฐ ๋ ˆ์ดํŠธ ํด๋Ÿญ๊ณผ ๋ฐ์ดํ„ฐ ๋ณต์›๊ธฐ, ๊ทธ๋ฆฌ๊ณ  ๋‹ค์ค‘ ๋ ˆ๋ฒจ ์‹ ํ˜ธ์— ์ ํ•ฉํ•œ ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ฒซ์งธ๋กœ, ์ ์‘ ์˜คํ”„์…‹ ์ œ๊ฑฐ ๋ฐ ๋ณ‘ํ•ฉ๋œ ์„œ๋จธ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฐ์ • ํ”ผ๋“œ๋ฐฑ ๋“ฑํ™”๊ธฐ๋ฅผ ๊ฐ–์ถ˜ ์ˆ˜์‹ ๊ธฐ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ๋œ ์ ์‘ ์˜คํ”„์…‹ ์ œ๊ฑฐ ์—”์ง„์€ ์ž„์˜์˜ ๋ฐ์ดํ„ฐ ์ŠคํŠธ๋ฆผ์˜ ์ƒ˜ํ”Œ๋ง ๋ฐ์ดํ„ฐ, ์—์ง€ ์ถœ๋ ฅ์„ ๊ฒ€์‚ฌํ•˜์—ฌ ๋ฐ์ดํ„ฐ ๊ฒฝ๋กœ ์ƒ์˜ ์˜คํ”„์…‹์„ ์ œ๊ฑฐํ•œ๋‹ค. ๋˜ํ•œ ํ•˜ํ”„ ๋ ˆ์ดํŠธ ๊ตฌ์กฐ์˜ ๋ณ‘ํ•ฉ๋œ ์„œ๋จธ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฐ์ • ํ”ผ๋“œ๋ฐฑ ๋“ฑํ™”๊ธฐ๋Š” ์ „๋ ฅ์˜ ์‚ฌ์šฉ๊ณผ ํ•˜๋“œ์›จ์–ด์˜ ๋ณต์žก์„ฑ์„ ์ค„์ธ๋‹ค. 40 nm CMOS ๊ธฐ์ˆ ๋กœ ์ œ์ž‘๋œ ํ”„๋กœํ† ํƒ€์ž… ์นฉ์€ 0.083 mm2 ์˜ ๋ฉด์ ์„ ๊ฐ€์ง„๋‹ค. ์ ์‘ ์˜คํ”„์…‹ ์ œ๊ฑฐ๊ธฐ ๋•๋ถ„์— ์ œ์•ˆ๋œ ์ˆ˜์‹ ๊ธฐ๋Š” 10-12 ๋ฏธ๋งŒ์˜ BER์„ ๋‹ฌ์„ฑํ•œ๋‹ค. ๋˜ํ•œ ์ œ์•ˆ๋œ ์ˆ˜์‹ ๊ธฐ๋Š” 5GHz์—์„œ 27 dB์˜ ๋กœ์Šค๋ฅผ ๊ฐ–๋Š” ์ฑ„๋„์—์„œ 10 Gb/s์˜ ์†๋„์—์„œ 18.6 mW๋ฅผ ์†Œ๋น„ํ•˜๋ฉฐ 0.068 pJ/b/dB์˜ FoM์„ ๋‹ฌ์„ฑํ•˜์˜€๋‹ค. ๋‘๋ฒˆ์งธ๋กœ, ๋ณด์šฐ ๋ ˆ์ดํŠธ ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ๊ฐ€ ์žˆ๋Š” 40 nm CMOS ์ˆ˜์‹ ๊ธฐ๊ฐ€ ์ œ์•ˆ๋˜์—ˆ๋‹ค. ์ˆ˜์‹ ๊ธฐ์—๋Š” ๋‘๊ฐœ์˜ ๋ณด์šฐ ๋ ˆ์ดํŠธ ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ๋ฅผ ํฌํ•จํ•œ๋‹ค. ํ•˜๋‚˜๋Š” ํ™•๋ฅ ๋ก ์  ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•˜๋Š” ๋ณด์šฐ ๋ ˆ์ดํŠธ ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ์ด๋‹ค. ๋ณด์šฐ ๋ ˆ์ดํŠธ ํด๋Ÿญ ๋ฐ์ดํ„ฐ ๋ณต์›๊ธฐ์˜ ์žฅ์  ๋•๋ถ„์— ์—์ง€ ์ƒ˜ํ”Œ๋ง ํด๋Ÿญ์„ ์‚ฌ์šฉํ•˜์ง€ ์•Š์Œ์œผ๋กœ์„œ ํŒŒ์›Œ์˜ ์†Œ๋ชจ์™€ ํ•˜๋“œ์›จ์–ด์˜ ๋ณต์žก์„ฑ์„ ์ค„์˜€๋‹ค. ๋˜ํ•œ ํ™•๋ฅ ์  ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ๋Š” ์ˆ˜์ง ์•„์ด ์˜คํ”„๋‹์„ ์ตœ๋Œ€ํ™”ํ•˜๋Š” ์ตœ์ ์˜ ์œ„์ƒ ์ง€์ ์„ ์ฐพ์„ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋‹ค๋ฅธ ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ๋Š” ๋‹ค์ค‘ ๋ ˆ๋ฒจ ์‹ ํ˜ธ์— ์ ํ•ฉํ•œ ๋ฐฉ์‹์ด๋‹ค. ์‹ฌ๋ณผ ๊ฐ„ ๊ฐ„์„ญ์ด ๋‹ค์ค‘ ๋ ˆ๋ฒจ ์‹ ํ˜ธ์— ๋งค์šฐ ์ทจ์•ฝํ•œ ๋ฌธ์ œ๊ฐ€ ์žˆ๋”๋ผ๋„ ์ œ์•ˆ๋œ ๋‹ค์ค‘ ๋ ˆ๋ฒจ ์‹ ํ˜ธ์šฉ ๋ณด์šฐ ๋ ˆ์ดํŠธ ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ๋Š” ์ˆ˜์ง ์•„์ด ๋งˆ์ง„์„ ํ™•๋ณดํ•œ๋‹ค. ๊ฒŒ๋‹ค๊ฐ€ ์ œ์•ˆ๋œ ๋ณด์šฐ ๋ ˆ์ดํŠธ ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ๋Š” ๊ธฐ์กด์˜ ๋ฎฌ๋Ÿฌ-๋ฎ๋Ÿฌ ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ์™€ ๋‹ฌ๋ฆฌ ์ ์‘ํ˜• ๊ฒฐ์ • ํ”ผ๋“œ๋ฐฑ ๋“ฑํ™”๊ธฐ๊ฐ€ ์žˆ๋”๋ผ๋„ ์œ ์ผํ•œ ๋ฝ ์ง€์ ์„ ๊ฐ–๋Š”๋‹ค. ํ”„๋กœํ† ํƒ€์ž… ์นฉ์€ 0.24mm2์˜ ๋ฉด์ ์„ ๊ฐ€์ง„๋‹ค. ์ œ์•ˆ๋œ PAM-4 ์ˆ˜์‹ ๊ธฐ๋Š” 48 Gb/s์˜ ์†๋„์—์„œ 10-11 ๋ฏธ๋งŒ์˜ BER์„ ๊ฐ€์ง€๊ณ , 2.42 pJ/b์˜ FoM์„ ๊ฐ€์ง„๋‹ค.CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 THESIS ORGANIZATION 5 CHAPTER 2 BACKGROUNDS 6 2.1 BASIC ARCHITECTURE IN SERIAL LINK 6 2.1.1 SERIAL COMMUNICATION 6 2.1.2 CLOCK AND DATA RECOVERY 8 2.1.3 MULTI-LEVEL PULSE-AMPLITUDE MODULATION 10 2.2 EQUALIZER 12 2.2.1 EQUALIZER OVERVIEW 12 2.2.2 DECISION-FEEDBACK EQUALIZER 15 2.2.3 ADAPTIVE EQUALIZER 18 2.3 CLOCK RECOVERY 21 2.3.1 2X OVERSAMPLING PD ALEXANDER PD 22 2.3.2 BAUD-RATE PD MUELLER MULLER PD 25 CHAPTER 3 AN ADAPTIVE OFFSET CANCELLATION SCHEME AND SHARED SUMMER ADAPTIVE DFE 28 3.1 OVERVIEW 28 3.2 AN ADAPTIVE OFFSET CANCELLATION SCHEME AND SHARED-SUMMER ADAPTIVE DFE FOR LOW POWER RECEIVER 31 3.3 SHARED SUMMER DFE 37 3.4 RECEIVER IMPLEMENTATION 42 3.5 MEASUREMENT RESULTS 45 CHAPTER 4 PAM-4 BAUD-RATE DIGITAL CDR 51 4.1 OVERVIEW 51 4.2 OVERALL ARCHITECTURE 53 4.2.1 PROPOSED BAUD-RATE CDR ARCHITECTURE 53 4.2.2 PROPOSED ANALOG FRONT-END STRUCTURE 59 4.3 STOCHASTIC PHASE DETECTION PAM-4 CDR 64 4.3.1 PROPOSED STOCHASTIC PHASE DETECTION 64 4.3.2 COMPARISON OF THE STOCHASTIC PD WITH SS-MMPD 70 4.4 PHASE DETECTION FOR MULTI-LEVEL SIGNALING 73 4.4.1 PROPOSED BAUD-RATE PHASE DETECTOR FOR MULTI-LEVEL SIGNAL 73 4.4.2 DATA LEVEL AND DFE COEFFICIENT ADAPTATION 79 4.4.3 PROPOSED PHASE DETECTOR 84 4.5 MEASUREMENT RESULT 88 4.5.1 MEASUREMENT OF THE PROPOSED STOCHASTIC BAUD-RATE PHASE DETECTION 94 4.5.2 MEASUREMENT OF THE PROPOSED BAUD-RATE PHASE DETECTION FOR MULTI-LEVEL SIGNAL 97 CHAPTER 5 CONCLUSION 103 BIBLIOGRAPHY 105 ์ดˆ ๋ก 109๋ฐ•

    Modeling and Design of High-Speed CMOS Receivers for Short-Reach Photonic Links

    Get PDF
    This dissertation presents several research outcomes towards designing high-speed CMOS optical receivers for energy-efficient short-reach optical links. First, it provides a wide survey of recently published equalizer-based receivers and presents a novel methodology to accurately calculate their noise. The proposed methodology is then used to find the receiver that achieves the best sensitivity. Second, the trade-off between sensitivity and power dissipation of the receiver is optimized to reduce the energy consumption per bit of the overall link. Design trade-offs for the receiver, transmitter, and the overall link are presented, and comparisons are made to study how much receiver sensitivity can be sacrificed to save its power dissipation before this power reduction is outpaced by the transmitterโ€™s increase in power. Unlike conventional wisdom, our results show that energy-efficient links require low-power receivers with input capacitance much smaller than that required for noise-optimum performance. Third, the thesis presents a novel equalization technique for optical receivers. A linear equalizer (LE) is realized by adding a pole in the feedback paths of an active feedback-based wideband amplifier. By embedding the peaking in the main amplifier (MA), the front-end meets the sensitivity and gain of conventional LE-based receivers with better energy efficiency by eliminating the standalone equalizer stage(s). Electrical measurements are presented to demonstrate the capability of the proposed technique in restoring the bandwidth and improving the performance over the conventional design
    • โ€ฆ
    corecore