2,427 research outputs found

    Neuro-memristive Circuits for Edge Computing: A review

    Full text link
    The volume, veracity, variability, and velocity of data produced from the ever-increasing network of sensors connected to Internet pose challenges for power management, scalability, and sustainability of cloud computing infrastructure. Increasing the data processing capability of edge computing devices at lower power requirements can reduce several overheads for cloud computing solutions. This paper provides the review of neuromorphic CMOS-memristive architectures that can be integrated into edge computing devices. We discuss why the neuromorphic architectures are useful for edge devices and show the advantages, drawbacks and open problems in the field of neuro-memristive circuits for edge computing

    Integrated Evaluation Platform for Secured Devices

    Get PDF
    International audienceIn this paper, we describe the structure of a FPGAsmart card emulator. The aim of such an emulator is to improvethe behaviour of the whole architecture when faults occur. Withinthis card, an embedded Advanced Encryption Standard (AES)protected against DFA is inserted as well as a fault injectionblock. We also present the microprocessor core which controlsthe whole card

    X-ray satellite

    Get PDF
    A mock-up for the development of the Engineering Model (EM) and Flight Model (FM) is introduced which shortens the delay of 7 weeks regarding the previous planned launch date of September 30, to about 3 weeks maintaining the 4 weeks reserve is discussed. As compared with the new assembly integration test (EM-AIT) schedule of March 11, 1985, the EM data handling system is on the critical path. For the attitude measurement and control subsystem, sufficiently flexibility is achieved through combination of dummies and EM hardware to catch up with the existing delays

    Stochastic Memory Devices for Security and Computing

    Get PDF
    With the widespread use of mobile computing and internet of things, secured communication and chip authentication have become extremely important. Hardware-based security concepts generally provide the best performance in terms of a good standard of security, low power consumption, and large-area density. In these concepts, the stochastic properties of nanoscale devices, such as the physical and geometrical variations of the process, are harnessed for true random number generators (TRNGs) and physical unclonable functions (PUFs). Emerging memory devices, such as resistive-switching memory (RRAM), phase-change memory (PCM), and spin-transfer torque magnetic memory (STT-MRAM), rely on a unique combination of physical mechanisms for transport and switching, thus appear to be an ideal source of entropy for TRNGs and PUFs. An overview of stochastic phenomena in memory devices and their use for developing security and computing primitives is provided. First, a broad classification of methods to generate true random numbers via the stochastic properties of nanoscale devices is presented. Then, practical implementations of stochastic TRNGs, such as hardware security and stochastic computing, are shown. Finally, future challenges to stochastic memory development are discussed

    Efficient hardware prototype of ECDSA modules for blockchain applications

    Get PDF
    This paper concentrates on the hardware implementation of efficient and re- configurable elliptic curve digital signature algorithm (ECDSA) that is suitable for verifying transactions in Blockchain related applications. Despite ECDSA architecture being computationally expensive, the usage of a dedicated stand-alone circuit enables speedy execution of arithmetic operations. The prototype put forth supports N-bit elliptic curve cryptography (ECC) group operations, signature generation and verification over a prime field for any elliptic curve. The research proposes new hardware framework for modular multiplication and modular multiplicative inverse which is adopted for group operations involved in ECDSA. Every hardware design offered are simulated using modelsim register transfer logic (RTL) simulator. Field programmable gate array (FPGA) implementation of var- ious modules within ECDSA circuit is compared with equivalent existing techniques that is both hardware and software based to highlight the superiority of the suggested work. The results showcased prove that the designs implemented are both area and speed efficient with faster execution and less resource utilization while maintaining the same level of security. The suggested ECDSA structure could replace the software equivalent of digital signatures in hardware blockchain to thwart software attacks and to provide better data protection

    Low cost attitude control system scanwheel development

    Get PDF
    In order to satisfy a growing demand for low cost attitude control systems for small spacecraft, development of low cost scanning horizon sensor coupled to a low cost/low power consumption Reaction Wheel Assembly was initiated. This report addresses the details of the versatile design resulting from this effort. Tradeoff analyses for each of the major components are included, as well as test data from an engineering prototype of the hardware
    corecore