96 research outputs found

    Current-Based High-Sensitivity Differential Detection of Light Power Using Si Photodiodes in Bridge Configuration for Chemical/Biological Optical Sensing☆

    Get PDF
    Abstract We present a new optoelectronic technique based on the differential measurement of currents for the detection of the variations of low concentrations of chemical and biological substances by measuring light power absorption through two Si-photodiodes (SiPD) in a bridge configuration. The solution exhibits high sensitivity, linear response and allows the compensation of the initial bridge unbalance without changing its elements so optimising signal amplification gain and detection resolution. The technique shows unique performances with respect to voltage amplitude measurements performed by lock-in amplifiers. Moreover, the experimental apparatus is simple and suitable for portable integrated sensor systems. Its main performances have been evaluated through a prototype PCB demonstrating the capability to detect light power variations with a settable maximum sensitivity of 30mV/nW and a resolution of 33pW

    Low-cost Discrete Off-the-shelf Components 1MHz Analogue Lock-in Amplifier for Fast Detection of Organic Compounds through Pulsed Lasers

    Get PDF
    Abstract We report on a low-cost analogue Lock-In Amplifier (LIA) designed to measure amplitude variations of 100 ns pulsed signals at operating frequencies f 0 up to 1MHz. The fabricated prototype PCB, implemented through discrete off-the-shelf components, allowed to validate the solution and to perform circuit testing and characterisations. The LIA architecture is simple and based on the classic phase-sensitive synchronous demodulation technique including two different amplification stages together with suitable filtering blocks that allow setting the instrument gain, sensitivity and resolution. With respect to conventional LIAs typically working at lower operating frequencies, the reported solution provides also high-speed DC output of about 1ms. By employing short voltage pulses, the LIA is capable to detect fast and small variations of the signal amplitude envisaging its use in sensor applications to measure reduced variations of chemical and physical phenomena through high-speed systems with very small time constants

    Broadband nonlinear modulation of incoherent light using a transparent optoelectronic neuron array

    Full text link
    Nonlinear optical processing of ambient natural light is highly desired in computational imaging and sensing applications. A strong optical nonlinear response that can work under weak broadband incoherent light is essential for this purpose. Here we introduce an optoelectronic nonlinear filter array that can address this emerging need. By merging 2D transparent phototransistors (TPTs) with liquid crystal (LC) modulators, we create an optoelectronic neuron array that allows self-amplitude modulation of spatially incoherent light, achieving a large nonlinear contrast over a broad spectrum at orders-of-magnitude lower intensity than what is achievable in most optical nonlinear materials. For a proof-of-concept demonstration, we fabricated a 10,000-pixel array of optoelectronic neurons, each serving as a nonlinear filter, and experimentally demonstrated an intelligent imaging system that uses the nonlinear response to instantly reduce input glares while retaining the weaker-intensity objects within the field of view of a cellphone camera. This intelligent glare-reduction capability is important for various imaging applications, including autonomous driving, machine vision, and security cameras. Beyond imaging and sensing, this optoelectronic neuron array, with its rapid nonlinear modulation for processing incoherent broadband light, might also find applications in optical computing, where nonlinear activation functions that can work under ambient light conditions are highly sought.Comment: 20 Pages, 5 Figure

    Next Generation Graphene Photonics Enabled by Ultrafast Light-Matter Interactions and Machine Learning

    Full text link
    Graphene was first experimentally studied in 2004, featuring an atomically-thin structure. Since then, many unique photonic and electrical properties of graphene and other 2D materials were reported. However, additional efforts are necessary to convert these findings in physics to successful industrial applications. This thesis presents works exploiting the picosecond-scale ultrafast light-matter interactions in graphene to meet the growing demands in IR sensing, 3D detection, and THz light source. We will start from graphene’s interactions with ultrafast lasers. The hot carrier generation, relaxation, and transport will be discussed in graphene and graphene heterostructures. We present a graphene phototransistor with decent near- and mid-infrared (IR) responsivity. Moreover, the detector’s responsivity is tunable with a gate voltage. The responsivity has different gate dependence under different illumination wavelengths. Based on the spectrally-resolved response, we adopt least square regression algorithms to extract the light source’s spectral information at near-infrared. We further perform first-principle photocurrent simulations and spectral reconstructions on defect-free ideal devices with optimized band structure. The results indicate the detector's potential as an ultra-compact on-chip spectrometer for multispectral imaging after further developments. Then we discuss how the graphene detector’s high transparency enables a novel 3D detection and imaging technology. Our graphene phototransistors absorb < 10% of light and give a 3 A/W photoresponse at 532 nm wavelength. The high transparency and sensitivity enable transparent photodetector arrays built on glass substrates, with over 85% of incident light power transmits through such an imager chip. We stack multiple transparent arrays at different focal depths in a camera system. The setup enables simultaneous light intensity (image) acquisition at different depths. We use artificial neural networks to process the image stack data into 3D position and configuration of the objects. For a proof-of-concept demonstration, we used the setup to achieve 3D ranging and tracking of a point source. The technical approach benefits from compactness, high speed, and decent power efficiency for real-time 3D tracking applications. Lastly, we explore the potential of graphene heterostructures as terahertz (THz) emitters and ultrafast photodetectors. The picosecond-scale light-matter interaction of graphene allows us to engineer its optical and electrical structures for THz field emission. We insert a graphene layer in the channel of a silicon photoconductive switch. The device works as a THz electromagnetic wave emitter under femtosecond laser pulse illumination. We use an on-chip pump-probe system to study the temporal and spatial behavior of the THz generation. Our device’s emission amplitude is 80 times larger than a graphene-free control group under identical device geometry and test conditions. Moreover, we also observe strong photocurrent generation below 0.5 ps verified by the photocurrent autocorrelation test. The responsivity is 800 times larger than that in the graphene-free control group. The substantial enhancements are attributed to the high mobility in graphene and the strong absorption in silicon. Gate dependence observations indicate vertical hot-carrier transfer from the silicon layer to the graphene layer, followed by efficient lateral charge separation inside graphene. The results open the gate for more research and development of graphene-based strong THz sources and sensitive ultrafast photodetectors. We conclude the works with strategies to convert graphene’s unique properties to practical and competitive applications. The strategies are extended to general nanodevice and nano-system development methodologies. Specifically, we propose the synergic design of nanodevices and machine learning algorithms as a feasible approach towards many new applications.PHDElectrical and Computer EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169683/1/dehui_1.pd

    Low cost autonomous lock-in amplifier for resistance/capacitance sensor measurements

    Get PDF
    This paper presents the design and experimental characterization of a portable high-precision single-phase lock-in instrument with phase adjustment. The core consists of an analog lock-in amplifier IC prototype, integrated in 0.18 µm CMOS technology with 1.8 V supply, which features programmable gain and operating frequency, resulting in a versatile on-chip solution with power consumption below 834 µW. It incorporates automatic phase alignment of the input and reference signals, performed through both a fixed-90° and a 4-bit digitally programmable phase shifter, specifically designed using commercially available components to operate at 1 kHz frequency. The system is driven by an Arduino YUN board, thus overall conforming a low-cost autonomous signal recovery instrument to determine, in real time, the electrical equivalent of resistive and capacitive sensors with a sensitivity of 16.3 µV/O @ erS < 3 % and 37 kV/F @ erS < 5 %, respectively

    Photodetectors based on low-dimensional materials and hybrid systems

    Get PDF
    Premi extraordinari doctorat UPC curs 2015-2016, àmbit de CiènciesIn the last decade, two-dimensional (2D) materials have attracted attention both in the nascent field of flexible nanotechnology as well as in more conventional semiconductor technol-ogies. Within the rapidly expanding portfolio of 2D materials, the group of semiconducting transition metal dichalcogenides (TMDCs) has emerged as an intriguing candidate for various optoelectronic applications. The atomically thin profile, favorable bandgap and outstanding electronic properties of TMDCs are unique features that can be explored and applied in novel photodetecting platforms. This thesis presents highly sensitive two-dimensional phototransistors made of sub-nanometre thick TMDC channels. Firstly, an encapsulation route is developed to address the detrimental and, to date, uncontrollable impact of atmospheric adsorbates, which severely deteriorate detector performance. The passivation scheme improves the transport properties of TMDCs, leading to high photoconductive gain with gate dependent responsivity of 10 -10^4 A/W throughout the visible, and temporal response down to 10 ms, which is suitable for imaging applications. The atomic device thickness yields ultra-low dark current operation and record detectivity of 10^11 - 10^12 Jones for TMDC-based detectors is achieved. The use of monolayer TMDCs, however, has disadvantages like limited spectral absorption due to the bandgap and limited absorption efficiency. In order to increase the absorption and to extend the spectral coverage, TMDC channels are covered with colloidal quantum dots to make hybrid phototransistors. This compelling synergy combines strong and size-tunable light absorption within the QD film, efficient charge separation at the TMDC-QD interface and fast carrier transport through the 2D channel. This results in large gain of 10^6 electrons per absorbed photon and creates the basis for extremely sensitive light sensing. Colloidal quan-tum dots are an ideal sensitizer, because their solution-processing and facile implementation on arbitrary substrates allows for low-cost fabrication of hybrid TMDC-QD devices. Moreover, the custom tailored bandgap of quantum dots provides the photodetector with wide spectral tunability. For photodetection in the spectral window of NIR/SWIR, which is still dominated by expensive and complex epitaxy-based technologies, these hybrid detectors have the potential to favorably compete with commercially available systems. The interface of the TMDC-QD hybrid is of paramount importance for sensitive detector operation. A high density of trap states at the interface is shown to be responsible for inefficient gate-control over channel conductivity, which leads to high dark currents. To maintain the unique electrical field-effect modulation in TMDCs upon deposition of colloidal quantum dots, a passivation route of the interface with semiconducting metal-oxide films is developed. The buffer-layer material is selected such that charge transfer from QDs into the channel is favored. The retained field-effect modulation with a large on/off ratio allows operation of the phototransistor at significantly lower dark currents than non-passivated hybrids. A TMDC-QD phototransistor with an engineered interface that exhibits detectivity of 10^12 - 10^13 Jones and response times of 12 ms and less is reported. In summary, this work showcases prototype photodetectors made of encapsulated 2D TMDCs and TMDC-QD hybrids. Plain TMDC-detectors have potential for application as flexible and semi-transparent detector platforms with high sensitivity in the visible. The hybrid TMDC-QD device increases its spectral selectivity to the NIR/SWIR due to the variable absorption of the sensitizing quantum dots and reaches compelling performance thanks to im-proved light-matter interaction and optimized photocarrier generation.En la última década ha surgido un gran interés por los materiales bidimensionales (2D) tanto para las tecnologías emergentes de dispositivos flexibles, como para las tecnologías de semiconductores tradicionales. Dentro del creciente catálogo de materiales 2D, los semiconductores basados en dicalcogenuros de metales de transición (DCMTs) han surgido como candidatos para aplicaciones optoelectrónicas. Sus características únicas, tales como grosor atómico, banda prohibida y propiedades electrónicas pueden ser examinadas y aplicadas en nuevas plataformas de fotodetección. En esta tesis se presentan nuevos fototransistores bidimensionales ultrasensibles basados en canales de DCMTs subnanométricos. Se presenta una ruta de encapsulación para intentar solucionar el impacto negativo, e incontrolable hasta la fecha, producido por la adsorción de sustancias atmosféricas que degradan el funcionamiento de los detectores. Este proceso mejora el transporte en los DCMTs dando lugar a una gran ganancia fotoconductora, una respuesta, dependiente de la tensión aplicada en el gate, de 10-10^4 A/W en el visible y una respuesta temporal de tan solo 10 ms, todo ello adecuado para aplicaciones de imagen. El grosor atómico de los dispositivos da lugar a corrientes de oscuridad muy bajas y una detectividad de 10^11-10^12 Jones. Sin embargo, el uso de monocapas de DCMTs presenta ciertas desventajas como por ejem-plo una eficiencia en la absorción baja. Con el fin de mejorar la absorción, los canales de DCMTs se han recubierto con puntos cuánticos (QDs) para fabricar fototransistores híbridos. Esta sinergia combina la alta absorción de los QDs, una eficiente separación de cargas en la interfaz DCMT-QD y un rápido transporte de cargas a través del canal 2D. Todo esto resulta en una ganancia de 10^6 electrones por fotón absorbido y crea la base para sensores de luz extremadamente sensibles. Los puntos cuánticos coloidales son sensibizadores ideales ya que su procesado en disolución y su fácil incorporación sobre cualquier sustrato permiten la fabricación de sistemas híbridos DCMT-QD a bajo coste. Además, la posibilidad de modifi-car la banda prohibida, ofrecida por los QDs, proporciona al fotodetector una amplia respuesta espectral. Para fotodetección en la ventana espectral del infrarrojo cercano (NIR/SWIR), estos detectores híbridos presentan el potencial de competir favorablemente con los sistemas comerciales disponibles. La interfaz entre el híbrido DCMT-QD es de la mayor importancia para la sensibilidad del detector. Se ha demostrado que una alta densidad de trampas en la interfaz es la responsable del ineficiente control mediante el gate de la conductividad del canal, dando lugar a corrientes de oscuridad muy altas. Para mantener la excepcional modulación de efecto campo aún después de la deposición de los QDs, se ha desarrollado una ruta de pasivación de la interfaz con óxidos metálicos semiconductores. El material de esta capa amortiguadora (buffer) es seleccionado de tal manera que permita la transferencia de cargas desde los puntos cuánticos hasta el canal DCMT. Esto retiene la modulación de efecto campo con una relación encendido/apagado muy alta, permitiendo el funcionamiento del fototransistor con corrientes de oscuridad significativamente menores que las de los híbridos sin pasivar. Así, se presenta un fototransistor híbrido DCMT-QD, con una interfaz cuidadosamente diseñada, que exhibe una detectividad de 10^12-10^13 Jones. En resumen, este trabajo presenta unos prototipos de fotodetectores basados en DCMT 2D encapsulados y en híbridos DCMT-QD. Los fotodetectores basados en DCMT simples presentan potencial para su aplicación en detectores flexibles y semitransparentes, con gran sensibilidad en el visible. Los híbridos DCMT-QD amplían la selectividad espectral al infrarrojo cercano gracias a la absorción variable ofrecida por los puntos cuánticos y alcanzan un muy interesante rendimiento gracias a una mejor interacción luz-materia.Award-winningPostprint (published version

    High-precision fluorescence photometry for real-time biomarkers detection

    Get PDF
    Les derniers évènements planétaires et plus particulièrement l'avènement sans précédent du nouveau coronavirus augmente la demande pour des appareils de test à proximité du patient. Ceux-ci fonctionnent avec une batterie et peuvent identifier rapidement des biomarqueurs cibles. Pareils systèmes permettent aux utilisateurs, disposant de connaissances limitées en la matière, de réagir rapidement, par exemple dans la détection d'un cas positif de COVID-19. La mise en œuvre de l'élaboration d'un tel instrument est un projet multidisciplinaire impliquant notamment la conception de circuits intégrés, la programmation, la conception optique et la biologie, demandant tous une maîtrise pointue des détails. De plus, l'établissement des spécifications et des exigences pour mesurer avec précision les interactions lumière-échantillon s'additionnent au besoin d'expérience dans la conception et la fabrication de tels systèmes microélectriques personnalisés et nécessitent en elles-mêmes, une connaissance approfondie de la physique et des mathématiques. Ce projet vise donc à concevoir et à mettre en œuvre un appareil sans fil pour détecter rapidement des biomarqueurs impliqués dans des maladies infectieuses telles que le COVID-19 ou des types de cancers en milieu ambulatoire. Cette détection se fait grâce à des méthodes basées sur la fluorescence. La spectrophotométrie de fluorescence permet aux médecins d'identifier la présence de matériel génétique viral ou bactérien tel que l'ADN ou l'ARN et de les caractériser. Les appareils de paillasse sont énormes et gourmand énergétiquement tandis que les spectrophotomètres à fluorescence miniatuarisés disponibles dans le commerce sont confrontés à de nombreux défis. Ces appareils miniaturisés ont été découverts en tirant parti des diodes électroluminescentes (DEL) à semi-conducteurs peu coûteuses et de la technologie des circuits intégrés. Ces avantages aident les scientifiques à réduire les erreurs possibles, la consommation d'énergie et le coût du produit final utilisé par la population. Cependant, comme leurs homologues de paillasse, ces appareils POC doivent quantifier les concentrations en micro-volume d'analytes sur une large gamme de longueurs d'onde suivant le cadre d'une économie en ressources. Le microsystème envisagé bénéficie d'une approche de haute précision pour fabriquer une puce microélectronique CMOS. Ce procédé se fait de concert avec un boîtier personnalisé imprimé en 3D pour réaliser le spectrophotomètre à la fluorescence nécessaire à la détection quantitative d'analytes en microvolume. En ce qui a trait à la conception de circuits, une nouvelle technique de mise à auto-zeroing est appliquée à l'amplificateur central, celui-ci étant linéarisé avec des techniques de recyclage et de polarisation adaptative. Cet amplificateur central est entièrement différentiel et est utilisé dans un amplificateur à verrouillage pour récupérer le signal d'intérêt éclipsé par le bruit. De plus, l'augmentation de la sensibilité de l'appareil permet des mesures quantitatives avec des concentrations en micro-volume d'analytes ayant moins d'erreurs de prédiction de concentration. Cet avantage cumulé à une faible consommation d'énergie, un faible coût, de petites dimensions et un poids léger font de notre appareil une solution POC prometteuse dans le domaine de la spectrophotométrie de fluorescence. La validation de ce projet s'est fait en concevant, fabriquant et testant un prototype discret et sans fil. Son article de référence a été publié dans IEEE LSC 2018. Quant à la caractérisation et l'interprétation du prototype d'expériences in vitro à l'aide d'une interface MATLAB personnalisée, cet article a été publié dans IEEE Sensors journal (2021). Les circuits intégrés et les photodétecteurs ont été fabriqués ont été conçus et fabriqués par Cadence en 2019. Relativement aux solutions de circuit proposées, elles ont été fabriquées avec la technologie CMOS 180 nm et publiées lors de la conférence IEEE MWSCAS 2020. Tout comme cette dernière contribution, les expériences in vitro avec le dispositif proposé incluant la puce personnalisée et le boîtier imprimé en 3D ont été réalisés et les résultats électriques et optiques ont été soumis au IEEE Journal of Solid-State Circuits (JSSC 2022).The most recent and unprecedented experience of the novel coronavirus increases the demand for battery-operated near-patient testing devices that can rapidly identify the target biomarkers. Such systems enable end-users with limited resources to quickly get feedback on various medical tests, such as detecting positive COVID-19 cases. Implementing such a device is a multidisciplinary project dealing with multiple areas of expertise, including integrated circuit design, programming, optical design, and biology, each of which needs a firm grasp of details. Alongside the need for experience in designing and manufacturing custom microelectronic systems, establishing the specifications and requirements to precisely measure the light-sample interactions requires an in-depth knowledge of physics and mathematics. This project aims to design and implement a wireless point-of-care (POC) device to rapidly detect biomarkers involved in infectious diseases such as COVID-19 or different types of cancers in an ambulatory setting using fluorescence-based methods. Fluorescence spectrophotometry allows physicians to identify and characterize viral or bacterial genetic materials such as DNAs or RNAs. The benchtop devices that are currently available are bulky and power-hungry, whereas the commercially available miniaturized fluorescence spectrophotometers are facing many challenges. Many of these difficulties have been resolved in literature thanks to inexpensive semiconductor light-emitting diodes (LEDs) and integrated circuits technology. Such advantages aid scientists in decreasing the size, power consumption, and cost of the final product for end-users. However, like the benchtop counterparts, such POC devices must quantify micro-volume concentrations of analytes across a wide wave length range under an economy of resources. The envisioned microsystem benefits from a high-precision approach to fabricating a CMOS microelectronic chip combined with a custom 3D-printed housing. This implementation results in a fluorescence spectrophotometer for qualitative and quantitative detection of micro-volume analytes. In terms of circuit design, a novel switched-biasing ping-pong auto-zeroed technique is applied to the core amplifier, linearized with recycling and adaptive biasing techniques. The fully differential core amplifier is utilized within a lock-in amplifier to retrieve the signal of interest overshadowed by noise. Increasing the device's sensitivity allows quantitative measurements down to micro-volume concentrations of analytes with less concentration prediction error. Such an advantage, along with low-power consumption, low cost, low weight, and small dimensions, make our device a promising POC solution in the fluorescence spectrophotometry area. The approach of this project was validated by designing, fabricating, and testing a discrete and wireless prototype. Its conference paper was published in IEEE LSC 2018, and the prototype characterization and interpretation of in vitro experiments using a custom MATLAB interface were published in IEEE Sensors Journal (2021). The integrated circuits and photodetectors were designed and fabricated by the Cadence circuit design toolbox (2019). The proposed circuit solutions were fabricated with 180-nm CMOS technology and published at IEEE MWSCAS 2020 conference. As the last contribution, the in vitro experiments with the proposed device, including the custom chip and 3D-printed housing, were performed, and the electrical and optical results were submitted to the IEEE Journal of Solid-State Circuits (JSSC 2022)

    Graphene Plasmonic Fractal Metamaterials for Broadband Photodetectors

    Get PDF
    Metamaterials have recently established a new paradigm for enhanced light absorption in state-of-the-art photodetectors. Here, we demonstrate broadband, highly efficient, polarization-insensitive, and gate-tunable photodetection at room temperature in a novel metadevice based on gold/graphene Sierpinski carpet plasmonic fractals. We observed an unprecedented internal quantum efficiency up to 100% from the near-infrared to the visible range with an upper bound of optical detectivity of 1011 Jones and a gain up to 106, which is a fingerprint of multiple hot carriers photogenerated in graphene. Also, we show a 100-fold enhanced photodetection due to highly focused (up to a record factor of |E/E0| ≈ 20 for graphene) electromagnetic fields induced by electrically tunable multimodal plasmons, spatially localized in self-similar fashion on the metasurface. Our findings give direct insight into the physical processes governing graphene plasmonic fractal metamaterials. The proposed structure represents a promising route for the realization of a broadband, compact, and active platform for future optoelectronic devices including multiband bio/chemical and light sensors

    Hybrid Organic/Inorganic Optical Upconversion Devices

    Get PDF
    The widely available charge coupled device (CCD) and lately CMOS imaging devices have created many applications on a mass scale. However these devices are limited to wavelengths shorter than about 1 μm. Hybrid photon upconversion devices have been developed recently. The end goal is to achieve an alternative technology for imaging in the 1.5-μm region. The hybrid upconversion idea relies on the integration of a photodetector and an organic light emitting diode (OLED). Under a forward bias for the OLED, the detected signal in the Photodetector is sent to the OLED, resulting in an increase in emission at a shorter wavelength and therefore achieving optical up conversion. An OLED device can simply consists of a stack of anode, a hole transport layer (HTL), a light-emitting layer, an electron transport layer (ETL), a cathode layer, and it typically emits visible light. As each organic molecule is a topologically perfect structure, the growth of each organic layer does not require “lattice matching”, which has been the fundamental limit for inorganic semiconductor monolithic devices. Thus, integration of an OLED with a III–V compound semiconductor is a highly feasible and desirable approach for making low-cost, large-area, potentially high efficiency devices. This thesis addresses the physics, fabrication and characterization of hybrid near infrared optical upconverters and their imaging application. Firstly, one novel hybrid optical upconverter structure is presented, which substantially improves the upconversion efficiency by embedding a metal mirror. Efficient carrier injection from the inorganic photodetector to the OLED is achieved by the insertion of a thin Au metal embedded mirror at the inorganic-organic interface. The upconversion efficiency was improved by more than 100%. Secondly, the overall upconversion efficiency can be increased significantly, by introducing a gain mechanism into the Photodetector section of the upconverter. A promising option to implement gain is a heterojunction phototransistor (HPT). An InGaAs-InP HPT was integrated with an OLED, which converts 1.5-μm Infrared light to visible light with a built-in electrical gain (~94). The overall upconversion efficiency was improved to be 1.55 W/W. Thirdly, this upconversion approach can also be used to realize a pixelless imaging device. A pixelless hybrid upconversion device consists of a large-area single-mesa device, where the OLED output is spatially correlated with the input 1.5-µm scene. Only the parts receiving incoming photons will emit output photons. To achieve this functionality, photon-generated carriers must flow mainly along the layer-growth direction when injected from the InGaAs light absorption layer into OLED light emission layer. A prototype of pixelless imaging device based on an i-In0.53Ga0.47As/C60 heterojunction was demonstrated, which minimized lateral current spreading. This thesis presents experimental results of the first organic/inorganic hybrid optical amplifer and the first hybrid near infrared imaging device
    corecore