163 research outputs found

    Angular CMA: A modified Constant Modulus Algorithm providing steering angle updates

    Get PDF
    Conventional blind beamforming algorithms have no direct notion of the physical Direction of Arrival angle of an impinging signal. These blind adaptive algorithms operate by adjusting the complex steering vector in the case of changing signal conditions and directions. This paper presents Angular CMA, a blind beamforming method that calculates steering angle updates (instead of weight vector updates) to keep track of the desired signal. Angular CMA and its respective steering angle updates are particularly useful in the context of mixed-signal hierarchical arrays as means to find and distribute steering parameters. Simulations of Angular CMA show promising convergence behaviour, while having a lower complexity than alternative methods (e.g., MUSIC)

    DVB-S Signal Tracking Techniques for Mobile Phased Arrays

    Get PDF
    Abstract—A system that uses adaptive beamforming techniques for mobile Digital Video Broadcasting Satellite (DVB-S) reception is proposed in this paper. The purpose is to enable DVB-S reception in moving vehicles. Phased arrays are able to electronically track the desired signal during dynamic behaviour of the vehicle the array is mounted on.\ud The proposed system uses blind beamforming to adapt the array steering vector to changing signal (conditions and) directions. Movement of the vehicle, the phased array is mounted on, leads to modulus and phase deviations at the beamformer output. An extended version of the Constant Modulus Algorithm (CMA) algorithm is used to adapt the steering vector weights to compensate for those deviations.\ud For simulation of the proposed system a model of vehicle dynamics is used to generate realistic antenna data. Simulation of the proposed system based on this antenna data shows appropriate corrections for modulus and phase deviations

    A Novel Blind Adaptive Beamformer with Robustness against Mutual Coupling and Miscalibration Effects

    Full text link
    Beamforming techniques utilized either at the transmitter or the receiver terminals have achieved superior quality-of-service performances from both the multi-antenna wireless communications systems, communications intelligence and radar target detection perspectives. Despite the overwhelming advantages in ideal operating conditions, beamforming approaches have been shown to face substantial performance degradations due to unknown mutual coupling effects and miscalibrated array elements. As a promising solution, blind beamformers have been proposed as a class of receiver beamformers that do not require a reference signal to operate. In this paper, a novel gradient-based blind beamformer is introduced with the aim of mitigating the deteriorating effects of unknown mutual coupling or miscalibration effects. The proposed approach is shown to find the optimal weights in different antenna array configurations in the presence of several unknown imperfections (e.g., mutual coupling effects, miscalibration effects due to gain and phase variations, inaccurate antenna positions). By providing numerical results related to the proposed algorithm for different array configurations, and bench-marking with the other existing approaches, the proposed scheme has been shown to achieve superior performance in many aspects. Additionally, a measurement-based analysis has been included with validation purposes.Comment: Presented in EuCAP 2023, Copyright IEE

    Spatio-Temporal processing for Optimum Uplink-Downlink WCDMA Systems

    Get PDF
    The capacity of a cellular system is limited by two different phenomena, namely multipath fading and multiple access interference (MAl). A Two Dimensional (2-D) receiver combats both of these by processing the signal both in the spatial and temporal domain. An ideal 2-D receiver would perform joint space-time processing, but at the price of high computational complexity. In this research we investigate computationally simpler technique termed as a Beamfom1er-Rake. In a Beamformer-Rake, the output of a beamfom1er is fed into a succeeding temporal processor to take advantage of both the beamformer and Rake receiver. Wireless service providers throughout the world are working to introduce the third generation (3G) and beyond (3G) cellular service that will provide higher data rates and better spectral efficiency. Wideband COMA (WCDMA) has been widely accepted as one of the air interfaces for 3G. A Beamformer-Rake receiver can be an effective solution to provide the receivers enhanced capabilities needed to achieve the required performance of a WCDMA system. We consider three different Pilot Symbol Assisted (PSA) beamforming techniques, Direct Matrix Inversion (DMI), Least-Mean Square (LMS) and Recursive Least Square (RLS) adaptive algorithms. Geometrically Based Single Bounce (GBSB) statistical Circular channel model is considered, which is more suitable for array processing, and conductive to RAKE combining. The performances of the Beam former-Rake receiver are evaluated in this channel model as a function of the number of antenna elements and RAKE fingers, in which are evaluated for the uplink WCDMA system. It is shown that, the Beamformer-Rake receiver outperforms the conventional RAKE receiver and the conventional beamformer by a significant margin. Also, we optimize and develop a mathematical formulation for the output Signal to Interference plus Noise Ratio (SINR) of a Beam former-Rake receiver. In this research, also, we develop, simulate and evaluate the SINR and Signal to Noise Ratio (Et!Nol performances of an adaptive beamforming technique in the WCDMA system for downlink. The performance is then compared with an omnidirectional antenna system. Simulation shows that the best perfom1ance can be achieved when all the mobiles with same Angle-of-Arrival (AOA) and different distance from base station are formed in one beam

    Recursive least squares semi-blind beamforming for MIMO using decision directed adaptation and constant modulus criterion

    Get PDF
    A new semi-blind adaptive beamforming scheme is proposed for multi-input multi-output (MIMO) induced and space- division multiple-access based wireless systems that employ high order phase shift keying signaling. A minimum number of training symbols, very close to the number of receiver antenna elements, are used to provide a rough initial least squares estimate of the beamformer0s weight vector. A novel cost function combining the constant modulus criterion with decision-directed adaptation is adopted to adapt the beamformer weight vector. This cost function can be approximated as a quadratic form with a closed-form solution, based on which we then derive the recursive least squares (RLS) semi-blind adaptive beamforming algorithm. This semi-blind adaptive beamforming scheme is capable of converging fast to the minimum mean-square-error beamforming solution, as demonstrated in our simulation study. Our proposed semi-blind RLS beamforming algorithm therefore provides an e±cient detection scheme for the future generation of MIMO aided mobile communication systems

    Beamforming management and beam training in 5G system

    Get PDF
    Massive multiple-input-multiple-output (MIMO) antenna system with beamforming technique is an integral part of upcoming 5G new radio (NR) system. For the upcoming deployment of 5G NR system in both stand-alone (SA) and non-stand-alone (NSA) structure, beamforming plays an important role to achieve its key features and meet the estimated requirement. To be employed with massive MIMO antenna structure, beamforming will allow 5G system to serve several users at a time with better throughput and spectral usage. Beamforming will also minimize the path loss due to high susceptibility of millimetre wave and provide beamforming gain. For a wide range of benefit scheme, beamforming is currently a hot topic regarding the deployment of 5G. With the advantage of both analog and digital beamforming, hybrid beamforming structure can provide better system benchmark performance in terms of cost and flexibility. Switched beam training and adaptive beam training approaches and algorithms are developed in order to reduce training time, signalling overhead and misdetection probability. Some of the approaches and algorithm are addressed in this thesis. Beamforming management ensures the initiation and sustainability of the established link between transmitter and receiver through different processes. Beam tracking helps to keep track of the receiver devices during mobility. As beamforming is related to antenna configuration, near-field spherical wave front incident problem was ignored, and all the references and examples presented in this topic was obtained with a far-field propagation perspective. To avoid mutual coupling between antenna elements and grating lobe problems in antenna radiation pattern, each element is separated by half of the wavelength. This thesis paper aims to provide a broader view into beamforming scenario, starting from the basics of beamforming to training the beams and management aspects in the hardware part of 5G structure. Another goal is to present the necessity of beamforming in a 5G system by stating different benefits scheme such as spatial diversity, interference suppression, energy efficiency, spectral efficiency and so on. These benefits are justified by evaluating various research paper and MATLAB simulations

    Survey of energy efficient tracking and localization techniques in buildings using optical and wireless communication media

    Get PDF
    This paper presents a survey of beamforming, beamsteering and mobile tracking techniques. The survey was made in the context of the SOWICI project. The aim of this project is to reduce power consumption of data exchanging devices within houses. An optical fiber network is used for data transport to and from rooms whereas wireless transceivers communicate with appliances within the rooms. Using this approach, the aim is to reduce power consumption and exposure to electromagnetic radiation. To realize this, beamforming will be used to only radiate energy in, and receive signals from, the direction of interest. Because appliances within households can move, some of them even relatively fast, the pointing direction of the beam should be steerable. The pointing direction can be deduced from the communication link (beamsteering) or via separate mobile tracking techniques

    Adaptive Beamforming Algorithm Using a Pre-filtering System

    Get PDF

    Mobile and Wireless Communications

    Get PDF
    Mobile and Wireless Communications have been one of the major revolutions of the late twentieth century. We are witnessing a very fast growth in these technologies where mobile and wireless communications have become so ubiquitous in our society and indispensable for our daily lives. The relentless demand for higher data rates with better quality of services to comply with state-of-the art applications has revolutionized the wireless communication field and led to the emergence of new technologies such as Bluetooth, WiFi, Wimax, Ultra wideband, OFDMA. Moreover, the market tendency confirms that this revolution is not ready to stop in the foreseen future. Mobile and wireless communications applications cover diverse areas including entertainment, industrialist, biomedical, medicine, safety and security, and others, which definitely are improving our daily life. Wireless communication network is a multidisciplinary field addressing different aspects raging from theoretical analysis, system architecture design, and hardware and software implementations. While different new applications are requiring higher data rates and better quality of service and prolonging the mobile battery life, new development and advanced research studies and systems and circuits designs are necessary to keep pace with the market requirements. This book covers the most advanced research and development topics in mobile and wireless communication networks. It is divided into two parts with a total of thirty-four stand-alone chapters covering various areas of wireless communications of special topics including: physical layer and network layer, access methods and scheduling, techniques and technologies, antenna and amplifier design, integrated circuit design, applications and systems. These chapters present advanced novel and cutting-edge results and development related to wireless communication offering the readers the opportunity to enrich their knowledge in specific topics as well as to explore the whole field of rapidly emerging mobile and wireless networks. We hope that this book will be useful for students, researchers and practitioners in their research studies
    corecore