5,248 research outputs found

    Differential evolution with an evolution path: a DEEP evolutionary algorithm

    Get PDF
    Utilizing cumulative correlation information already existing in an evolutionary process, this paper proposes a predictive approach to the reproduction mechanism of new individuals for differential evolution (DE) algorithms. DE uses a distributed model (DM) to generate new individuals, which is relatively explorative, whilst evolution strategy (ES) uses a centralized model (CM) to generate offspring, which through adaptation retains a convergence momentum. This paper adopts a key feature in the CM of a covariance matrix adaptation ES, the cumulatively learned evolution path (EP), to formulate a new evolutionary algorithm (EA) framework, termed DEEP, standing for DE with an EP. Without mechanistically combining two CM and DM based algorithms together, the DEEP framework offers advantages of both a DM and a CM and hence substantially enhances performance. Under this architecture, a self-adaptation mechanism can be built inherently in a DEEP algorithm, easing the task of predetermining algorithm control parameters. Two DEEP variants are developed and illustrated in the paper. Experiments on the CEC'13 test suites and two practical problems demonstrate that the DEEP algorithms offer promising results, compared with the original DEs and other relevant state-of-the-art EAs

    Market-based Recommendation: Agents that Compete for Consumer Attention

    No full text
    The amount of attention space available for recommending suppliers to consumers on e-commerce sites is typically limited. We present a competitive distributed recommendation mechanism based on adaptive software agents for efficiently allocating the 'consumer attention space', or banners. In the example of an electronic shopping mall, the task is delegated to the individual shops, each of which evaluates the information that is available about the consumer and his or her interests (e.g. keywords, product queries, and available parts of a profile). Shops make a monetary bid in an auction where a limited amount of 'consumer attention space' for the arriving consumer is sold. Each shop is represented by a software agent that bids for each consumer. This allows shops to rapidly adapt their bidding strategy to focus on consumers interested in their offerings. For various basic and simple models for on-line consumers, shops, and profiles, we demonstrate the feasibility of our system by evolutionary simulations as in the field of agent-based computational economics (ACE). We also develop adaptive software agents that learn bidding strategies, based on neural networks and strategy exploration heuristics. Furthermore, we address the commercial and technological advantages of this distributed market-based approach. The mechanism we describe is not limited to the example of the electronic shopping mall, but can easily be extended to other domains
    corecore