330 research outputs found

    "Going back to our roots": second generation biocomputing

    Full text link
    Researchers in the field of biocomputing have, for many years, successfully "harvested and exploited" the natural world for inspiration in developing systems that are robust, adaptable and capable of generating novel and even "creative" solutions to human-defined problems. However, in this position paper we argue that the time has now come for a reassessment of how we exploit biology to generate new computational systems. Previous solutions (the "first generation" of biocomputing techniques), whilst reasonably effective, are crude analogues of actual biological systems. We believe that a new, inherently inter-disciplinary approach is needed for the development of the emerging "second generation" of bio-inspired methods. This new modus operandi will require much closer interaction between the engineering and life sciences communities, as well as a bidirectional flow of concepts, applications and expertise. We support our argument by examining, in this new light, three existing areas of biocomputing (genetic programming, artificial immune systems and evolvable hardware), as well as an emerging area (natural genetic engineering) which may provide useful pointers as to the way forward.Comment: Submitted to the International Journal of Unconventional Computin

    An artificial immune system algorithm for solving the uncapacitated single allocation p-Hub median problem

    Get PDF
    The present paper deals with a variant of hub location problems (HLP): the uncapacitated single allocation p-Hub median problem (USApHMP). This problem consists to jointly locate hub facilities and to allocate demand nodes to these selected facilities. The objective function is to minimize the routing of demands between any origin and destination pair of nodes. This problem is known to be NP-hard. Based on the artificial immune systems (AIS) framework, this paper develops a new approach to efficiently solve the USApHMP. The proposed approach is in the form of a clonal selection algorithm (CSA) that uses appropriate encoding schemes of solutions and maintains their feasibility. Comprehensive experiments and comparison of the proposed approach with other existing heuristics are conducted on benchmark from civil aeronautics board, Australian post, PlanetLab and Urand data sets. The results obtained allow to demonstrate the validity and the effectiveness of our approach. In terms of solution quality, the results obtained outperform the best-known solutions in the literature

    Machine Learning Techniques for Credit Card Fraud Detection

    Get PDF
    The term “fraud”, it always concerned about credit card fraud in our minds. And after the significant increase in the transactions of credit card, the fraud of credit card increased extremely in last years. So the fraud detection should include surveillance of the spending attitude for the person/customer to the determination, avoidance, and detection of unwanted behavior. Because the credit card is the most payment predominant way for the online and regular purchasing, the credit card fraud raises highly. The Fraud detection is not only concerned with capturing of the fraudulent practices, but also, discover it as fast as they can, because the fraud costs millions of dollar business loss and it is rising over time, and that affects greatly the worldwide economy. . In this paper we introduce 14 different techniques of how data mining techniques can be successfully combined to obtain a high fraud coverage with a high or low false rate, the Advantage and The Disadvantages of every technique, and The Data Sets used in the researches by researcher

    A Comprehensive Review of Bio-Inspired Optimization Algorithms Including Applications in Microelectronics and Nanophotonics

    Get PDF
    The application of artificial intelligence in everyday life is becoming all-pervasive and unavoidable. Within that vast field, a special place belongs to biomimetic/bio-inspired algorithms for multiparameter optimization, which find their use in a large number of areas. Novel methods and advances are being published at an accelerated pace. Because of that, in spite of the fact that there are a lot of surveys and reviews in the field, they quickly become dated. Thus, it is of importance to keep pace with the current developments. In this review, we first consider a possible classification of bio-inspired multiparameter optimization methods because papers dedicated to that area are relatively scarce and often contradictory. We proceed by describing in some detail some more prominent approaches, as well as those most recently published. Finally, we consider the use of biomimetic algorithms in two related wide fields, namely microelectronics (including circuit design optimization) and nanophotonics (including inverse design of structures such as photonic crystals, nanoplasmonic configurations and metamaterials). We attempted to keep this broad survey self-contained so it can be of use not only to scholars in the related fields, but also to all those interested in the latest developments in this attractive area

    Ab Initio Protein Structure Prediction Using Evolutionary Approach: A Survey

    Get PDF
    Protein Structure Prediction (PSP) problem is to determine the three-dimensional structure of a protein only from its primary structure. Misfolding of a protein causes human diseases. Thus, the knowledge of the structure and functionality of proteins, combined with the prediction of their structure is a complex problem and a challenge for the area of computational biology. The metaheuristic optimization algorithms are naturally applicable to support in solving NP-hard problems.These algorithms are bio-inspired, since they were designed based on procedures found in nature, such as the successful evolutionary behavior of natural systems. In this paper, we present a survey on methods to approach the \textit{ab initio} protein structure prediction based on evolutionary computing algorithms, considering both single and multi-objective optimization. An overview of the works is presented, with some details about which characteristics of the problem are considered, as well as specific points of the algorithms used. A comparison between the approaches is presented and some directions of the research field are pointed out

    Evolutionary Computation

    Get PDF
    This book presents several recent advances on Evolutionary Computation, specially evolution-based optimization methods and hybrid algorithms for several applications, from optimization and learning to pattern recognition and bioinformatics. This book also presents new algorithms based on several analogies and metafores, where one of them is based on philosophy, specifically on the philosophy of praxis and dialectics. In this book it is also presented interesting applications on bioinformatics, specially the use of particle swarms to discover gene expression patterns in DNA microarrays. Therefore, this book features representative work on the field of evolutionary computation and applied sciences. The intended audience is graduate, undergraduate, researchers, and anyone who wishes to become familiar with the latest research work on this field

    Traveling Salesman Problem

    Get PDF
    This book is a collection of current research in the application of evolutionary algorithms and other optimal algorithms to solving the TSP problem. It brings together researchers with applications in Artificial Immune Systems, Genetic Algorithms, Neural Networks and Differential Evolution Algorithm. Hybrid systems, like Fuzzy Maps, Chaotic Maps and Parallelized TSP are also presented. Most importantly, this book presents both theoretical as well as practical applications of TSP, which will be a vital tool for researchers and graduate entry students in the field of applied Mathematics, Computing Science and Engineering

    When Evolutionary Computing Meets Astro- and Geoinformatics

    Get PDF
    International audienceKnowledge discovery from data typically includes solving some type of an optimization problem that can be efficiently addressed using algorithms belonging to the class of evolutionary and bio-inspired computation. In this chapter, we give an overview of the various kinds of evolutionary algorithms, such as genetic algorithms, evolutionary strategy, evolutionary and genetic programming, differential evolution, and coevolutionary algorithms, as well as several other bio-inspired approaches, like swarm intelligence and artificial immune systems. After elaborating on the methodology, we provide numerous examples of applications in astronomy and geoscience and show how these algorithms can be applied within a distributed environment, by making use of parallel computing, which is essential when dealing with Big Data
    • 

    corecore