39 research outputs found

    Practical design of optimal wireless metropolitan area networks: model and algorithms for OFDMA networks

    Get PDF
    A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Ph.D.This thesis contributes to the study of the planning and optimisation of wireless metropolitan area networks, in particular to the access network design of OFDMAbased systems, where different parameters like base station position, antenna tilt and azimuth need to be configured during the early stages of the network life. A practical view for the solution of this problem is presented by means of the development of a novel design framework and the use of multicriteria optimisation. A further consideration of relaying and cooperative communications in the context of the design of this kind of networks is done, an area little researched. With the emergence of new technologies and services, it is very important to accurately identify the factors that affect the design of the wireless access network and define how to take them into account to achieve optimally performing and cost-efficient networks. The new features and flexibility of OFDMA networks seem particularly suited to the provision of different broadband services to metropolitan areas. However, until now, most existing efforts have been focused on the basic access capability networks. This thesis presents a way to deal with the trade-offs generated during the OFDMA access network design, and presents a service-oriented optimization framework that offers a new perspective for this process with consideration of the technical and economic factors. The introduction of relay stations in wireless metropolitan area networks will bring numerous advantages such as coverage extension and capacity enhancement due to the deployment of new cells and the reduction of distance between transmitter and receiver. However, the network designers will also face new challenges with the use of relay stations, since they involve a new source of interference and a complicated air interface; and this need to be carefully evaluated during the network design process. Contrary to the well known procedure of cellular network design over regular or hexagonal scenarios, the wireless network planning and optimization process aims to deal with the non-uniform characteristics of realistic scenarios, where the existence of hotspots, different channel characteristics for the users, or different service requirements will determine the final design of the wireless network. This thesis is structured in three main blocks covering important gaps in the existing literature in planning (efficient simulation) and optimisation. The formulation and ideas proposed in the former case can still be evaluated over regular scenarios, for the sake of simplicity, while the study of latter case needs to be done over specific scenarios that will be described when appropriate. Nevertheless, comments and conclusions are extrapolated to more general cases throughout this work. After an introduction and a description of the related work, this thesis first focuses on the study of models and algorithms for classical point-to-multipoint networks on Chapter 3, where the optimisation framework is proposed. Based on the framework, this work: - Identifies the technology-specific physical factors that affect most importantly the network system level simulation, planning and optimization process. - It demonstrates how to simplify the problem and translate it into a formal optimization routine with consideration of economic factors. - It provides the network provider, a detailed and clear description of different scenarios during the design process so that the most suitable solution can be found. Existing works on this area do not provide such a comprehensive framework. In Chapter 4: - The impact of the relay configuration on the network planning process is analysed. - A new simple and flexible scheme to integrate multihop communications in the Mobile WiMAX frame structure is proposed and evaluated. - Efficient capacity calculations that allow intensive system level simulations in a multihop environment are introduced. In Chapter 5: - An analysis of the optimisation procedure with the addition of relay stations and the derived higher complexity of the process is done. - A frequency plan procedure not found in the existing literature is proposed, which combines it with the use of the necessary frame fragmentation of in-band relay communications and cooperative procedures. - A novel joint two-step process for network planning and optimisation is proposed. Finally, conclusions and open issues are exposed

    Radio Channel Characterization for Future Wireless Networks and Applications

    Get PDF
    The new frontier of Above-6GHz bands is revolutionizing the field of wireless telecommunications, requiring new radio channel models to support the development of future Giga-bit-per-second systems. Recently, deterministic ray-based models as Ray Tracing are catching on worldwide thanks to their frequency-agility and reliable predictions. A modern 3D Ray Tracing developed at University of Bologna has been indeed calibrated and used to investigate the Above-6GHz radio channel properties. As starting point, an item-level electromagnetic characterization of common items and materials has been achieved successfully to obtain information about the complex permittivity, scattering diagrams and even de-polarization effects, both utilizing Vector Spectrum Analyzer (at 7-15GHz) and custom Channel Sounder (at 70GHz). Thus, a complete tuning of the Ray Tracing has been completed for Above-6GHz frequencies. Then, 70GHz indoor doubledirectional channel measurements have been performed in collaboration with TU Ilmenau, in order to attain a multidimensional analysis of propagation mechanisms in time and space, outlining the differences between Below- and Above-6GHz propagation. Furthermore, multi-antenna systems, as Multiple-Input-Multiple- Output (MIMO) and Beamforming have been taken into considerations, as strategic technologies for Above-6GHz systems, focusing on their implementation, limits and differences. Finally, complex system simulations of Space-Division-Multiple- Access (SDMA) networks in indoor scenarios have been tested, to assess the capabilities of Beamforming. In particular, efficient Beam Search and Tracking algorithms have been proposed to assess the impact of interference on Multi-User Beamforming at 70GHz and, also, novel Multi-Beam Beamforming schemes have been tested at 60GHz to investigate diversity strategies to cope with NLOS link and Human Blockage events. Moreover, the novel concept of Ray-Tracing-assisted Beamforming has been outlined, showing that ray-based models represent today the promising key tools to evaluate, design and enhance the future Above-6GHz multi-antenna systems

    Pattern Diversity Characterization of Reconfigurable Antenna Arrays for Next Generation Wireless Systems

    Get PDF
    The use of multi-antenna technology in wireless radio communications has attracted tremendous attention due to its potential to increase data rates without requiring additional bandwidth and transmission power. This has been driven by the burgeoning demand for high data rates and the need for instantaneous and ubiquitous access to information. It is therefore no surprise that current and future generation wireless standards such as LTE and WiMAX have adopted the use of adaptive multi-antenna systems also known as adaptive Multiple Input and Multiple Output (MIMO) as their de facto transmission technology. In this thesis work, we focus on the design of a smart wireless antenna system, and the study of relevant techniques that enable us to reap the benefits of their deployment in small wireless devices with MIMO capability. Specifically, we employ a new class of adaptive antenna systems known as Reconfigurable Antenna Systems (RAS) for portable devices. These antennas are capable of dynamically changing their electrical and radiation characteristics to suit the conditions of the wireless channel. The changing radiation patterns lead to pattern diversity gains that improve system performance. This is in contrast to conventional non-reconfigurable arrays which depend on signal processing techniques such as antenna grouping and beamforming to achieve performance gains. However, despite the demonstrable system-level performance benefits of RAS in adaptive MIMO, few of these antennas have been adopted and integrated in state-of-the-art wireless standards. Their usage has been partly inhibited by the prohibitive costs of implementation and operation in a real wireless infrastructure. As part of this thesis research effort we attempt to integrate these new antennas into a cost-effective real wireless MIMO testbed for use in current generation technologies. The solution integration is carried-out through the use of readily available software-defined radio frameworks. We first design, analyze and characterize the pattern diversity in RAS antenna arrays that resonate at frequencies suitable for 4G applications. We then study the benefits of pattern diversity obtained from RAS arrays over conventional space diversity approaches such as antenna grouping and beamforming. This dissertation also presents low-complexity adaptive physical layer models and algorithms to exploit the benefits of RAS array integration in MIMO wireless systems. We implement these algorithms in software-defined radio frameworks, experimentally test, and benchmark them against other established approaches in literature. And finally, integrate and test these RAS array design prototypes as part of the MIMO wireless system that leverages a state-of-the-art wireless base station and mobile terminals.Ph.D., Electrical Engineering -- Drexel University, 201

    Channel Identification for OFDM Communication System in Frequency Domain

    Get PDF

    Investigation of Channel Adaptation and Interference for Multiantenna OFDM

    Get PDF

    Compact adaptive planar antenna arrays for robust satellite navigation systems

    Get PDF
    In den zurĂŒckliegenden zwei Jahrzehnten ist die AbhĂ€ngigkeit der Industriegesellschaft von satellitengestĂŒtzten Ortungssystemen, Navigationsdiensten und Zeitsignalen dramatisch gewachsen. Darauf aufbauende moderne Anwendungen reichen von hochgenauen OrtungsgerĂ€ten bis zu intelligenten Transportsystemen und von der Synchronisation mobiler Netzwerke zu Wetter- und Klimabeobachtung. Dies setzt neue höhere Standards in der Robustheit, Genauigkeit, VerfĂŒgbarkeit und VerlĂ€sslichkeit moderner NavigationsempfĂ€nger voraus. Möglich werden diese Verbesserungen aktuell mit der EinfĂŒhrung von Multiantennensystemen in den NavigationsgerĂ€ten. Jedoch wird die Nutzung dieses Ansatzes durch die grĂ¶ĂŸeren Abmessungen der Antennenarrays erschwert, weil standardmĂ€ĂŸig der Elementabstand zu einer halben FreiraumwellenlĂ€nge gewĂ€hlt wird, was im L Band ca. 10 cm bedeutet. In dieser Arbeit werden kompakte Antennenarrays fĂŒr NavigationsempfĂ€nger mit geringerem Elementabstand vorgeschlagen, die eine Miniaturisierung der EmpfĂ€ngerabmessungen erlauben. Diese kompakten Arrays werden in ihrer LeistungsfĂ€higkeit jedoch durch die negativen Effekte der Verkopplung zwischen den Einzelelementen beeintrĂ€chtigt. FĂŒr die Beurteilung der EmpfĂ€ngerleistungsfĂ€higkeit existieren verschiedene QualitĂ€tsparameter fĂŒr Analyse und Entwurf der planaren Arrays. Damit werden z. B. Diversity Freiheitsgrade, QualitĂ€t der RichtungsschĂ€tzung, Polarisationsreinheit und die wechselseitigen Kopplungen gemessen und eine Entwurfsumgebung wird vorgestellt, in der das optimale kompakte Antennenarray fĂŒr den jeweiligen Einsatzzweck ausgewĂ€hlt und konfiguriert werden kann. Dieser Prozess wird durch eine Analyse des Rauschens und seiner Korrelationseigenschaften fĂŒr den gesamten EmpfĂ€nger begleitet. DarĂŒber hinaus wird ein analytisches Modell des effektiven carrier-to-interference-plus-noise ratio abgeleitet, um die LeistungsfĂ€higkeit der NavigationsempfĂ€nger in Szenarien mit Störsignalen zu untersuchen. Schließlich werden diese Betrachtungen durch den Aufbau eines kompletten SatellitennavigationsempfĂ€ngers ergĂ€nzt, um mit ihm den Nachweis der FunktionsfĂ€higkeit und der stabilen Funktion des entworfenen Systems mit kompaktem Array unter Störereinfluss bei Laborbedingungen und in den reale Außeneinsatz zu erbringen.Over the past two decades, humankind's reliance on global navigation satellite systems for precise positioning, navigation and timing services has grown remarkably. Such advanced applications vary from highly accurate surveying to intelligent transport systems, and from mobile network timing synchronization to weather and climate monitoring. This envisages new and higher standards of robustness, accuracy, coverage and integrity in modern navigation receivers. Recently, this has been accomplished with the incorporation of the multi-element navigation antenna receiver. However, the industrialization of this approach is limited due to the large antenna array size, hindered by the inter-element separation of half of the free-space wavelength, i.e. ≈ 10 cm at L band 1-2 GHz. In this thesis, compact navigation antenna arrays with smaller inter-element separations are proposed for the miniaturization of the overall size. However, these arrays become afflicted with the adverse effects of mutual coupling. Therefore, various figures-of-merit for the analysis and design of a compact planar navigation antenna array, such as performance diversity degrees-of-freedom, directional finding capabilities, and polarization purity, including mutual coupling effects, have been presented. This provides a general framework for the selection and configuration of the optimum compact navigation antenna array. In order to mitigate the mutual coupling, integration of the decoupling and matching network into customized compact navigation antenna array designs is performed. This is fostered by the correlated noise characterization of the complete receiver. Furthermore, an analytical model of the equivalent carrier-to-interference-plus-noise ratio is derived to investigate the navigation performance in interference scenarios. In the end, this is complemented by the implementation of the complete navigation receiver for verification and robustness validation of the derived compact antenna array concepts in indoor and outdoor interference scenarios
    corecore