2,880 research outputs found

    Evaluating the impact of physical activity apps and wearables: interdisciplinary review

    Get PDF
    Background: Although many smartphone apps and wearables have been designed to improve physical activity, their rapidly evolving nature and complexity present challenges for evaluating their impact. Traditional methodologies, such as randomized controlled trials (RCTs), can be slow. To keep pace with rapid technological development, evaluations of mobile health technologies must be efficient. Rapid alternative research designs have been proposed, and efficient in-app data collection methods, including in-device sensors and device-generated logs, are available. Along with effectiveness, it is important to measure engagement (ie, users’ interaction and usage behavior) and acceptability (ie, users’ subjective perceptions and experiences) to help explain how and why apps and wearables work. Objectives: This study aimed to (1) explore the extent to which evaluations of physical activity apps and wearables: employ rapid research designs; assess engagement, acceptability, as well as effectiveness; use efficient data collection methods; and (2) describe which dimensions of engagement and acceptability are assessed. Method: An interdisciplinary scoping review using 8 databases from health and computing sciences. Included studies measured physical activity, and evaluated physical activity apps or wearables that provided sensor-based feedback. Results were analyzed using descriptive numerical summaries, chi-square testing, and qualitative thematic analysis. Results: A total of 1829 abstracts were screened, and 858 articles read in full. Of 111 included studies, 61 (55.0%) were published between 2015 and 2017. Most (55.0%, 61/111) were RCTs, and only 2 studies (1.8%) used rapid research designs: 1 single-case design and 1 multiphase optimization strategy. Other research designs included 23 (22.5%) repeated measures designs, 11 (9.9%) nonrandomized group designs, 10 (9.0%) case studies, and 4 (3.6%) observational studies. Less than one-third of the studies (32.0%, 35/111) investigated effectiveness, engagement, and acceptability together. To measure physical activity, most studies (90.1%, 101/111) employed sensors (either in-device [67.6%, 75/111] or external [23.4%, 26/111]). RCTs were more likely to employ external sensors (accelerometers: P=.005). Studies that assessed engagement (52.3%, 58/111) mostly used device-generated logs (91%, 53/58) to measure the frequency, depth, and length of engagement. Studies that assessed acceptability (57.7%, 64/111) most often used questionnaires (64%, 42/64) and/or qualitative methods (53%, 34/64) to explore appreciation, perceived effectiveness and usefulness, satisfaction, intention to continue use, and social acceptability. Some studies (14.4%, 16/111) assessed dimensions more closely related to usability (ie, burden of sensor wear and use, interface complexity, and perceived technical performance). Conclusions: The rapid increase of research into the impact of physical activity apps and wearables means that evaluation guidelines are urgently needed to promote efficiency through the use of rapid research designs, in-device sensors and user-logs to assess effectiveness, engagement, and acceptability. Screening articles was time-consuming because reporting across health and computing sciences lacked standardization. Reporting guidelines are therefore needed to facilitate the synthesis of evidence across disciplines

    InterFlowCeption: Foundations for Technological Enhancement of Interoception to Foster Flow States during Mental Work: About the potential of technologically supported body awareness to promote flow experiences during mental work

    Get PDF
    Conducting mental work by interacting with digital technology increases productivity, but strains attentional capacities and mental well-being. In consequence, many mental workers try to cultivate their fow experience. However, this is complex and difcult to achieve. Nevertheless, current technological systems do not yet provide this support in mental work. As interoception, the individual bodily awareness is an underlying mechanism of numerous fow correlates, it might ofer a new approach for fow-supporting systems in these scenarios. Results from a survey study with 176 digital workers show that adaptive regulation of interoceptive sensations correlates with higher levels of fow and engagement. Additionally, regular mindfulness practices improved workers’ adaptive regulation of bodily signals. Based on these results and integrating the current literature, this work conceptualizes three future technological support systems, such as interoceptive biofeedback, and electrical or auditory stimulation to enhance interoceptive awareness and foster fow in mental work

    Self-Control in Cyberspace: Applying Dual Systems Theory to a Review of Digital Self-Control Tools

    Get PDF
    Many people struggle to control their use of digital devices. However, our understanding of the design mechanisms that support user self-control remains limited. In this paper, we make two contributions to HCI research in this space: first, we analyse 367 apps and browser extensions from the Google Play, Chrome Web, and Apple App stores to identify common core design features and intervention strategies afforded by current tools for digital self-control. Second, we adapt and apply an integrative dual systems model of self-regulation as a framework for organising and evaluating the design features found. Our analysis aims to help the design of better tools in two ways: (i) by identifying how, through a well-established model of self-regulation, current tools overlap and differ in how they support self-control; and (ii) by using the model to reveal underexplored cognitive mechanisms that could aid the design of new tools.Comment: 11.5 pages (excl. references), 6 figures, 1 tabl

    The Scent of Collaboration: Exploring the Efect of Smell on Social Interactions

    Get PDF
    Social interactions are multisensory experiences. However, it is not well understood how technology-mediated smell can support social interactions, especially in collaborative tasks. To explore its effect on collaboration, we asked eleven pairs of users to work together on a writing task while wearing an interactive jewellery designed to emit scent in a controlled fashion. In a within-subjects experiment, participants were asked to collaboratively write a story about a standardized visual stimulus while exposed to with scent and without scent conditions. We analyzed video recordings and written stories using a combination of methods from HCI, psychology, sociology, and human communication research. We observed differences in both participants' communication and creation of insightful stories in the with scent condition. Furthermore, scent helped participants recover from communication breakdown even though they were unaware of it. We discuss the possible implications of our findings and the potential of technology-mediated scent for collaborative activities

    VizCom: A Novel Workflow Model for ICU Clinical Decision-Support

    Get PDF
    The Intensive Care Unit (ICU) has the highest annual mortality rate (4.4M) of any hospital unit or 25% of all clinical admissions. Studies show a relationship between clinician cognitive load and workflow, and their impact on patient safety and the subsequent occurrence of medical mishaps due to diagnostic error - in spite of advances in health information technology, e.g., bedside and clinical decision support (CDS) systems. The aim of our research is to: 1) investigate the root causes (underlying mechanisms) of ICU error related to the effects of clinical workflow: medical cognition, team communication/collaboration, and the use of diagnostic/CDS systems and 2) construct and validate a novel workflow model that supports improved clinical workflow, with goals to decrease adverse events, increase safety, and reduce intensivist time, effort, and cognitive resources. Lastly, our long-term objective is to apply data from aims one and two to design the next generation of diagnostic visualization-communication (VizCom) system that improves intensive care workflow, communication, and effectiveness in healthcare

    Eye contact over video

    Get PDF

    Citizen engagement through tangible data representation

    Get PDF
    We begin with the premise that data literacy is a fundamental facet of citizen education in this information age, and that an engaged citizenry in a democracy not only requires access to data, but also the capacity to manipulate and examine the data from multiple perspectives. The visualization of data elucidates trends and patterns in the phenomena that the data represents, and opens accessibility to understanding complicated human and natural processes represented by data sets. Research indicates that interacting with a visualization amplifies cognition and analysis. A single visualization may show only one facet of the data. To examine the data from multiple perspectives, engaged citizens need to be able to construct their own visualizations from a data set. Many tools for data visualization have responded to this need, allowing non-data experts to manipulate and gain insights into their data, but most of these tools are restricted to the computer screen, keyboard, and mouse. Cognition and analysis may be strengthened even more through embodied interaction with data. We present here the rationale for the design of a tool that allows users to probe a data set, through interactions with graspable (tangible) three-dimensional objects, rather than through a keyboard and mouse interaction. We argue that the use of tangibles facilitates understanding abstract concepts, and facilitates many concrete learning scenarios. Another advantage of using tangibles over screen-based tools is that they foster collaboration, which can promote a productive working and learning environment. We speculate that collaborative data exploration can be a productive educational activity for citizens in their communities and in the classroom, and we suggest our tool as a means to do this

    Comparing Dwell Time, Pursuits and Gaze Gestures for Gaze Interaction on Handheld Mobile Devices

    Get PDF
    Gaze is promising for hands-free interaction on mobile devices. However, it is not clear how gaze interaction methods compare to each other in mobile settings. This paper presents the first experiment in a mobile setting that compares three of the most commonly used gaze interaction methods: Dwell time, Pursuits, and Gaze gestures. In our study, 24 participants selected one of 2, 4, 9, 12 and 32 targets via gaze while sitting and while walking. Results show that input using Pursuits is faster than Dwell time and Gaze gestures especially when there are many targets. Users prefer Pursuits when stationary, but prefer Dwell time when walking. While selection using Gaze gestures is more demanding and slower when there are many targets, it is suitable for contexts where accuracy is more important than speed. We conclude with guidelines for the design of gaze interaction on handheld mobile devices
    • …
    corecore