111 research outputs found

    Coarse-grained reconfigurable array architectures

    Get PDF
    Coarse-Grained Reconfigurable Array (CGRA) architectures accelerate the same inner loops that benefit from the high ILP support in VLIW architectures. By executing non-loop code on other cores, however, CGRAs can focus on such loops to execute them more efficiently. This chapter discusses the basic principles of CGRAs, and the wide range of design options available to a CGRA designer, covering a large number of existing CGRA designs. The impact of different options on flexibility, performance, and power-efficiency is discussed, as well as the need for compiler support. The ADRES CGRA design template is studied in more detail as a use case to illustrate the need for design space exploration, for compiler support and for the manual fine-tuning of source code

    QUKU: A Coarse Grained Paradigm for FPGAs

    Get PDF
    To fill the gap between increasing demand for reconfigurability and performance efficiency, CGRAs are seen to be an emerging platform. The advantage lies in quick dynamic reconfiguration and power efficiency. Despite having these advantages they have failed to show their mark. This paper describes the QUKU architecture, which uses a coarse-grained dynamically reconfigurable PE array (CGRA) overlaid on an FPGA. The low-speed reconfigurability of the FPGA is used to optimize the CGRA for different applications, whilst the high-speed CGRA reconfiguration is used within an application for operator re-use

    Virtual Runtime Application Partitions for Resource Management in Massively Parallel Architectures

    Get PDF
    This thesis presents a novel design paradigm, called Virtual Runtime Application Partitions (VRAP), to judiciously utilize the on-chip resources. As the dark silicon era approaches, where the power considerations will allow only a fraction chip to be powered on, judicious resource management will become a key consideration in future designs. Most of the works on resource management treat only the physical components (i.e. computation, communication, and memory blocks) as resources and manipulate the component to application mapping to optimize various parameters (e.g. energy efficiency). To further enhance the optimization potential, in addition to the physical resources we propose to manipulate abstract resources (i.e. voltage/frequency operating point, the fault-tolerance strength, the degree of parallelism, and the configuration architecture). The proposed framework (i.e. VRAP) encapsulates methods, algorithms, and hardware blocks to provide each application with the abstract resources tailored to its needs. To test the efficacy of this concept, we have developed three distinct self adaptive environments: (i) Private Operating Environment (POE), (ii) Private Reliability Environment (PRE), and (iii) Private Configuration Environment (PCE) that collectively ensure that each application meets its deadlines using minimal platform resources. In this work several novel architectural enhancements, algorithms and policies are presented to realize the virtual runtime application partitions efficiently. Considering the future design trends, we have chosen Coarse Grained Reconfigurable Architectures (CGRAs) and Network on Chips (NoCs) to test the feasibility of our approach. Specifically, we have chosen Dynamically Reconfigurable Resource Array (DRRA) and McNoC as the representative CGRA and NoC platforms. The proposed techniques are compared and evaluated using a variety of quantitative experiments. Synthesis and simulation results demonstrate VRAP significantly enhances the energy and power efficiency compared to state of the art.Siirretty Doriast

    Are coarse-grained overlays ready for general purpose application acceleration on FPGAs?

    Get PDF
    Combining processors with hardware accelerators has become a norm with systems-on-chip (SoCs) ever present in modern compute devices. Heterogeneous programmable system on chip platforms sometimes referred to as hybrid FPGAs, tightly couple general purpose processors with high performance reconfigurable fabrics, providing a more flexible alternative. We can now think of a software application with hardware accelerated portions that are reconfigured at runtime. While such ideas have been explored in the past, modern hybrid FPGAs are the first commercial platforms to enable this move to a more software oriented view, where reconfiguration enables hardware resources to be shared by multiple tasks in a bigger application. However, while the rapidly increasing logic density and more capable hard resources found in modern hybrid FPGA devices should make them widely deployable, they remain constrained within specialist application domains. This is due to both design productivity issues and a lack of suitable hardware abstraction to eliminate the need for working with platform-specific details, as server and desktop virtualization has done in a more general sense. To allow mainstream adoption of FPGA based accelerators in general purpose computing, there is a need to virtualize FPGAs and make them more accessible to application developers who are accustomed to software API abstractions and fast development cycles. In this paper, we discuss the role of overlay architectures in enabling general purpose FPGA application acceleration

    Just In Time Assembly (JITA) - A Run Time Interpretation Approach for Achieving Productivity of Creating Custom Accelerators in FPGAs

    Get PDF
    The reconfigurable computing community has yet to be successful in allowing programmers to access FPGAs through traditional software development flows. Existing barriers that prevent programmers from using FPGAs include: 1) knowledge of hardware programming models, 2) the need to work within the vendor specific CAD tools and hardware synthesis. This thesis presents a series of published papers that explore different aspects of a new approach being developed to remove the barriers and enable programmers to compile accelerators on next generation reconfigurable manycore architectures. The approach is entitled Just In Time Assembly (JITA) of hardware accelerators. The approach has been defined to allow hardware accelerators to be built and run through software compilation and run time interpretation outside of CAD tools and without requiring each new accelerator to be synthesized. The approach advocates the use of libraries of pre-synthesized components that can be referenced through symbolic links in a similar fashion to dynamically linked software libraries. Synthesis still must occur but is moved out of the application programmers software flow and into the initial coding process that occurs when programming patterns that define a Domain Specific Language (DSL) are first coded. Programmers see no difference between creating software or hardware functionality when using the DSL. A new run time interpreter is introduced to assemble the individual pre-synthesized hardware accelerators that comprise the accelerator functionality within a configurable tile array of partially reconfigurable slots at run time. Quantitative results are presented that compares utilization, performance, and productivity of the approach to what would be achieved by full custom accelerators created through traditional CAD flows using hardware programming models and passing through synthesis

    VLSI design of configurable low-power coarse-grained array architecture

    Get PDF
    Biomedical signal acquisition from in- or on-body sensors often requires local (on-node) low-level pre-processing before the data are sent to a remote node for aggregation and further processing. Local processing is required for many different operations, which include signal cleanup (noise removal), sensor calibration, event detection and data compression. In this environment, processing is subject to aggressive energy consumption restrictions, while often operating under real-time requirements. These conflicting requirements impose the use of dedicated circuits addressing a very specific task or the use of domain-specific customization to obtain significant gains in power efficiency. However, economic and time-to-market constraints often make the development or use of application-specific platforms very risky.One way to address these challenges is to develop a sensor node with a general-purpose architecture combining a low-power, low-performance general microprocessor or micro-controller with a coarse-grained reconfigurable array (CGRA) acting as an accelerator. A CGRA consists of a fixed number of processing units (e.g., ALUs) whose function and interconnections are determined by some configuration data.The objective of this work is to create an RTL-level description of a low-power CGRA of ALUs and produce a low-power VLSI (standard cell) implementation, that supports power-saving features.The CGRA implementation should use as few resources as possible and fully exploit the intended operation environment. The design will be evaluated with a set of simple signal processing task

    FPGA structures for high speed and low overhead dynamic circuit specialization

    Get PDF
    A Field Programmable Gate Array (FPGA) is a programmable digital electronic chip. The FPGA does not come with a predefined function from the manufacturer; instead, the developer has to define its function through implementing a digital circuit on the FPGA resources. The functionality of the FPGA can be reprogrammed as desired and hence the name “field programmable”. FPGAs are useful in small volume digital electronic products as the design of a digital custom chip is expensive. Changing the FPGA (also called configuring it) is done by changing the configuration data (in the form of bitstreams) that defines the FPGA functionality. These bitstreams are stored in a memory of the FPGA called configuration memory. The SRAM cells of LookUp Tables (LUTs), Block Random Access Memories (BRAMs) and DSP blocks together form the configuration memory of an FPGA. The configuration data can be modified according to the user’s needs to implement the user-defined hardware. The simplest way to program the configuration memory is to download the bitstreams using a JTAG interface. However, modern techniques such as Partial Reconfiguration (PR) enable us to configure a part in the configuration memory with partial bitstreams during run-time. The reconfiguration is achieved by swapping in partial bitstreams into the configuration memory via a configuration interface called Internal Configuration Access Port (ICAP). The ICAP is a hardware primitive (macro) present in the FPGA used to access the configuration memory internally by an embedded processor. The reconfiguration technique adds flexibility to use specialized ci rcuits that are more compact and more efficient t han t heir b ulky c ounterparts. An example of such an implementation is the use of specialized multipliers instead of big generic multipliers in an FIR implementation with constant coefficients. To specialize these circuits and reconfigure during the run-time, researchers at the HES group proposed the novel technique called parameterized reconfiguration that can be used to efficiently and automatically implement Dynamic Circuit Specialization (DCS) that is built on top of the Partial Reconfiguration method. It uses the run-time reconfiguration technique that is tailored to implement a parameterized design. An application is said to be parameterized if some of its input values change much less frequently than the rest. These inputs are called parameters. Instead of implementing these parameters as regular inputs, in DCS these inputs are implemented as constants, and the application is optimized for the constants. For every change in parameter values, the design is re-optimized (specialized) during run-time and implemented by reconfiguring the optimized design for a new set of parameters. In DCS, the bitstreams of the parameterized design are expressed as Boolean functions of the parameters. For every infrequent change in parameters, a specialized FPGA configuration is generated by evaluating the corresponding Boolean functions, and the FPGA is reconfigured with the specialized configuration. A detailed study of overheads of DCS and providing suitable solutions with appropriate custom FPGA structures is the primary goal of the dissertation. I also suggest different improvements to the FPGA configuration memory architecture. After offering the custom FPGA structures, I investigated the role of DCS on FPGA overlays and the use of custom FPGA structures that help to reduce the overheads of DCS on FPGA overlays. By doing so, I hope I can convince the developer to use DCS (which now comes with minimal costs) in real-world applications. I start the investigations of overheads of DCS by implementing an adaptive FIR filter (using the DCS technique) on three different Xilinx FPGA platforms: Virtex-II Pro, Virtex-5, and Zynq-SoC. The study of how DCS behaves and what is its overhead in the evolution of the three FPGA platforms is the non-trivial basis to discover the costs of DCS. After that, I propose custom FPGA structures (reconfiguration controllers and reconfiguration drivers) to reduce the main overhead (reconfiguration time) of DCS. These structures not only reduce the reconfiguration time but also help curbing the power hungry part of the DCS system. After these chapters, I study the role of DCS on FPGA overlays. I investigate the effect of the proposed FPGA structures on Virtual-Coarse-Grained Reconfigurable Arrays (VCGRAs). I classify the VCGRA implementations into three types: the conventional VCGRA, partially parameterized VCGRA and fully parameterized VCGRA depending upon the level of parameterization. I have designed two variants of VCGRA grids for HPC image processing applications, namely, the MAC grid and Pixie. Finally, I try to tackle the reconfiguration time overhead at the hardware level of the FPGA by customizing the FPGA configuration memory architecture. In this part of my research, I propose to use a parallel memory structure to improve the reconfiguration time of DCS drastically. However, this improvement comes with a significant overhead of hardware resources which will need to be solved in future research on commercial FPGA configuration memory architectures

    Rewriting History: Repurposing Domain-Specific CGRAs

    Full text link
    Coarse-grained reconfigurable arrays (CGRAs) are domain-specific devices promising both the flexibility of FPGAs and the performance of ASICs. However, with restricted domains comes a danger: designing chips that cannot accelerate enough current and future software to justify the hardware cost. We introduce FlexC, the first flexible CGRA compiler, which allows CGRAs to be adapted to operations they do not natively support. FlexC uses dataflow rewriting, replacing unsupported regions of code with equivalent operations that are supported by the CGRA. We use equality saturation, a technique enabling efficient exploration of a large space of rewrite rules, to effectively search through the program-space for supported programs. We applied FlexC to over 2,000 loop kernels, compiling to four different research CGRAs and 300 generated CGRAs and demonstrate a 2.2×\times increase in the number of loop kernels accelerated leading to 3×\times speedup compared to an Arm A5 CPU on kernels that would otherwise be unsupported by the accelerator
    corecore