25 research outputs found

    CGHPRO – A comprehensive data analysis tool for array CGH

    Get PDF
    BACKGROUND: Array CGH (Comparative Genomic Hybridisation) is a molecular cytogenetic technique for the genome wide detection of chromosomal imbalances. It is based on the co-hybridisation of differentially labelled test and reference DNA onto arrays of genomic BAC clones, cDNAs or oligonucleotides, and after correction for various intervening variables, loss or gain in the test DNA can be indicated from spots showing aberrant signal intensity ratios. Now that this technique is no longer confined to highly specialized laboratories and is entering the realm of clinical application, there is a need for a user-friendly software package that facilitates estimates of DNA dosage from raw signal intensities obtained by array CGH experiments, and which does not depend on a sophisticated computational environment. RESULTS: We have developed a user-friendly and versatile tool for the normalization, visualization, breakpoint detection and comparative analysis of array-CGH data. CGHPRO is a stand-alone JAVA application that guides the user through the whole process of data analysis. The import option for image analysis data covers several data formats, but users can also customize their own data formats. Several graphical representation tools assist in the selection of the appropriate normalization method. Intensity ratios of each clone can be plotted in a size-dependent manner along the chromosome ideograms. The interactive graphical interface offers the chance to explore the characteristics of each clone, such as the involvement of the clones sequence in segmental duplications. Circular Binary Segmentation and unsupervised Hidden Markov Model algorithms facilitate objective detection of chromosomal breakpoints. The storage of all essential data in a back-end database allows the simultaneously comparative analysis of different cases. The various display options facilitate also the definition of shortest regions of overlap and simplify the identification of odd clones. CONCLUSION: CGHPRO is a comprehensive and easy-to-use data analysis tool for array CGH. Since all of its features are available offline, CGHPRO may be especially suitable in situations where protection of sensitive patient data is an issue. It is distributed under GNU GPL licence and runs on Linux and Windows

    a versatile tool for the analysis and integrative visualization of DNA copy number variants

    Get PDF
    Background The analysis of DNA copy number variants (CNV) has increasing impact in the field of genetic diagnostics and research. However, the interpretation of CNV data derived from high resolution array CGH or NGS platforms is complicated by the considerable variability of the human genome. Therefore, tools for multidimensional data analysis and comparison of patient cohorts are needed to assist in the discrimination of clinically relevant CNVs from others. Results We developed GenomeCAT, a standalone Java application for the analysis and integrative visualization of CNVs. GenomeCAT is composed of three modules dedicated to the inspection of single cases, comparative analysis of multidimensional data and group comparisons aiming at the identification of recurrent aberrations in patients sharing the same phenotype, respectively. Its flexible import options ease the comparative analysis of own results derived from microarray or NGS platforms with data from literature or public depositories. Multidimensional data obtained from different experiment types can be merged into a common data matrix to enable common visualization and analysis. All results are stored in the integrated MySQL database, but can also be exported as tab delimited files for further statistical calculations in external programs. Conclusions GenomeCAT offers a broad spectrum of visualization and analysis tools that assist in the evaluation of CNVs in the context of other experiment data and annotations. The use of GenomeCAT does not require any specialized computer skills. The various R packages implemented for data analysis are fully integrated into GenomeCATs graphical user interface and the installation process is supported by a wizard. The flexibility in terms of data import and export in combination with the ability to create a common data matrix makes the program also well suited as an interface between genomic data from heterogeneous sources and external software tools. Due to the modular architecture the functionality of GenomeCAT can be easily extended by further R packages or customized plug-ins to meet future requirements

    aCGHViewer: A Generic Visualization Tool For aCGH data

    Get PDF
    Array-Comparative Genomic Hybridization (aCGH) is a powerful high throughput technology for detecting chromosomal copy number aberrations (CNAs) in cancer, aiming at identifying related critical genes from the affected genomic regions. However, advancing from a dataset with thousands of tabular lines to a few candidate genes can be an onerous and time-consuming process. To expedite the aCGH data analysis process, we have developed a user-friendly aCGH data viewer (aCGHViewer) as a conduit between the aCGH data tables and a genome browser. The data from a given aCGH analysis are displayed in a genomic view comprised of individual chromosome panels which can be rapidly scanned for interesting features. A chromosome panel containing a feature of interest can be selected to launch a detail window for that single chromosome. Selecting a data point of interest in the detail window launches a query to the UCSC or NCBI genome browser to allow the user to explore the gene content in the chromosomal region. Additionally, aCGHViewer can display aCGH and expression array data concurrently to visually correlate the two. aCGHViewer is a stand alone Java visualization application that should be used in conjunction with separate statistical programs. It operates on all major computer platforms and is freely available at http://falcon.roswellpark.org/aCGHview/

    Computational Methods for the Analysis of Array Comparative Genomic Hybridization

    Get PDF
    Array comparative genomic hybridization (array CGH) is a technique for assaying the copy number status of cancer genomes. The widespread use of this technology has lead to a rapid accumulation of high throughput data, which in turn has prompted the development of computational strategies for the analysis of array CGH data. Here we explain the principles behind array image processing, data visualization and genomic profile analysis, review currently available software packages, and raise considerations for future software development

    CAPweb: a bioinformatics CGH array Analysis Platform

    Get PDF
    Assessing variations in DNA copy number is crucial for understanding constitutional or somatic diseases, particularly cancers. The recently developed array-CGH (comparative genomic hybridization) technology allows this to be investigated at the genomic level. We report the availability of a web tool for analysing array-CGH data. CAPweb (CGH array Analysis Platform on the Web) is intended as a user-friendly tool enabling biologists to completely analyse CGH arrays from the raw data to the visualization and biological interpretation. The user typically performs the following bioinformatics steps of a CGH array project within CAPweb: the secure upload of the results of CGH array image analysis and of the array annotation (genomic position of the probes); first level analysis of each array, including automatic normalization of the data (for correcting experimental biases), breakpoint detection and status assignment (gain, loss or normal); validation or deletion of the analysis based on a summary report and quality criteria; visualization and biological analysis of the genomic profiles and results through a user-friendly interface. CAPweb is accessible at

    CGHScan: finding variable regions using high-density microarray comparative genomic hybridization data

    Get PDF
    BACKGROUND: Comparative genomic hybridization can rapidly identify chromosomal regions that vary between organisms and tissues. This technique has been applied to detecting differences between normal and cancerous tissues in eukaryotes as well as genomic variability in microbial strains and species. The density of oligonucleotide probes available on current microarray platforms is particularly well-suited for comparisons of organisms with smaller genomes like bacteria and yeast where an entire genome can be assayed on a single microarray with high resolution. Available methods for analyzing these experiments typically confine analyses to data from pre-defined annotated genome features, such as entire genes. Many of these methods are ill suited for datasets with the number of measurements typical of high-density microarrays. RESULTS: We present an algorithm for analyzing microarray hybridization data to aid identification of regions that vary between an unsequenced genome and a sequenced reference genome. The program, CGHScan, uses an iterative random walk approach integrating multi-layered significance testing to detect these regions from comparative genomic hybridization data. The algorithm tolerates a high level of noise in measurements of individual probe intensities and is relatively insensitive to the choice of method for normalizing probe intensity values and identifying probes that differ between samples. When applied to comparative genomic hybridization data from a published experiment, CGHScan identified eight of nine known deletions in a Brucella ovis strain as compared to Brucella melitensis. The same result was obtained using two different normalization methods and two different scores to classify data for individual probes as representing conserved or variable genomic regions. The undetected region is a small (58 base pair) deletion that is below the resolution of CGHScan given the array design employed in the study. CONCLUSION: CGHScan is an effective tool for analyzing comparative genomic hybridization data from high-density microarrays. The algorithm is capable of accurately identifying known variable regions and is tolerant of high noise and varying methods of data preprocessing. Statistical analysis is used to define each variable region providing a robust and reliable method for rapid identification of genomic differences independent of annotated gene boundaries

    Comparative Genomics with Multi-agent Systems

    Get PDF
    The detection of the regions with mutations associated with different pathologies is an important step for selecting relevant genes. The corresponding information of the mutations and genes is distributed in different public sources and databases, so it is necessary to use systems that can contrast different sources and select conspicuous information. This work proposes a virtual organization of agents that can analyze and interpret the results from Array-based comparative genomic hybridization, thus facilitating the traditionally manual process of the analysis and interpretation of results
    corecore