840 research outputs found

    Adaptive Replication in Distributed Content Delivery Networks

    Full text link
    We address the problem of content replication in large distributed content delivery networks, composed of a data center assisted by many small servers with limited capabilities and located at the edge of the network. The objective is to optimize the placement of contents on the servers to offload as much as possible the data center. We model the system constituted by the small servers as a loss network, each loss corresponding to a request to the data center. Based on large system / storage behavior, we obtain an asymptotic formula for the optimal replication of contents and propose adaptive schemes related to those encountered in cache networks but reacting here to loss events, and faster algorithms generating virtual events at higher rate while keeping the same target replication. We show through simulations that our adaptive schemes outperform significantly standard replication strategies both in terms of loss rates and adaptation speed.Comment: 10 pages, 5 figure

    A Literature Survey of Cooperative Caching in Content Distribution Networks

    Full text link
    Content distribution networks (CDNs) which serve to deliver web objects (e.g., documents, applications, music and video, etc.) have seen tremendous growth since its emergence. To minimize the retrieving delay experienced by a user with a request for a web object, caching strategies are often applied - contents are replicated at edges of the network which is closer to the user such that the network distance between the user and the object is reduced. In this literature survey, evolution of caching is studied. A recent research paper [15] in the field of large-scale caching for CDN was chosen to be the anchor paper which serves as a guide to the topic. Research studies after and relevant to the anchor paper are also analyzed to better evaluate the statements and results of the anchor paper and more importantly, to obtain an unbiased view of the large scale collaborate caching systems as a whole.Comment: 5 pages, 5 figure

    Adaptive TTL-Based Caching for Content Delivery

    Full text link
    Content Delivery Networks (CDNs) deliver a majority of the user-requested content on the Internet, including web pages, videos, and software downloads. A CDN server caches and serves the content requested by users. Designing caching algorithms that automatically adapt to the heterogeneity, burstiness, and non-stationary nature of real-world content requests is a major challenge and is the focus of our work. While there is much work on caching algorithms for stationary request traffic, the work on non-stationary request traffic is very limited. Consequently, most prior models are inaccurate for production CDN traffic that is non-stationary. We propose two TTL-based caching algorithms and provide provable guarantees for content request traffic that is bursty and non-stationary. The first algorithm called d-TTL dynamically adapts a TTL parameter using a stochastic approximation approach. Given a feasible target hit rate, we show that the hit rate of d-TTL converges to its target value for a general class of bursty traffic that allows Markov dependence over time and non-stationary arrivals. The second algorithm called f-TTL uses two caches, each with its own TTL. The first-level cache adaptively filters out non-stationary traffic, while the second-level cache stores frequently-accessed stationary traffic. Given feasible targets for both the hit rate and the expected cache size, f-TTL asymptotically achieves both targets. We implement d-TTL and f-TTL and evaluate both algorithms using an extensive nine-day trace consisting of 500 million requests from a production CDN server. We show that both d-TTL and f-TTL converge to their hit rate targets with an error of about 1.3%. But, f-TTL requires a significantly smaller cache size than d-TTL to achieve the same hit rate, since it effectively filters out the non-stationary traffic for rarely-accessed objects
    corecore