36,397 research outputs found

    Stem Cell Antigen CD34 In Native And Engineered Form Alter Its Binding Ability To Stromal Cells And Ligands: A Classical Example Of Clinical Benefits Of Therapeutic Genetic Engineering Of Stem Cells In Transplantation

    Get PDF
    CD34 is a highly glycosylated surface-expressed sialomucin and, because it is present on hematopoietic stem cells (HSCs), has demonstrated immense clinical utility in their enumeration in aphaeresis products, immunoaffinity purification for transplantation, and disease monitoring. The success of CD34 based reagents in identifying hematopoietic progenitors led to the assumption that CD34 is expressed on cells with regenerative potential and is sufficient for hematopoietic reconstitution in marrow-ablated recipients. However, its role has not been identified in substantial detail. 

With the advent of the fact that CD34 binds adapter protein like CRK-L in cytosol and CD34 knock out studies identified a a signaling role, CD34 antigen has been proposed to play a signaling function. Since it is a sialomucin, a member of the group adhesion molecules, we attempted to identify a role by over-expreesing its gene in cell lines. We report here that CD34 and engineered forms (Ser306 & Tyr318) significantly regulates adhesion to stromal cells, like mesenchymal stem cells and bone marrow ligands. These enhance binding of cells overexpressing CD34 by upregulating integrins and we therefore propose that such cells may effectively potentiate the success of transplantation through greater homing if they are used for transfusion

    Beneficial effects of reconstituted high-density lipoprotein (rHDL) on circulating CD34+ cells in patients after an acute coronary syndrome

    Get PDF
    Background: High-density lipoproteins (HDL) favorably affect endothelial progenitor cells (EPC). Circulating progenitor cell level and function are impaired in patients with acute coronary syndrome (ACS). This study investigates the short-term effects of reconstituted HDL (rHDL) on circulating progenitor cells in patients with ACS. Methods and Findings: The study population consisted of 33 patients with recent ACS: 20 patients from the ERASE trial (randomized to receive 4 weekly intravenous infusions of CSL-111 40 mg/kg or placebo) and 13 additional patients recruited as controls using the same enrolment criteria. Blood was collected from 16 rHDL (CSL-111)-treated patients and 17 controls at baseline and at 6–7 weeks (i.e. 2–3 weeks after the fourth infusion of CSL-111 in ERASE). CD34+ and CD34+/kinase insert domain receptor (KDR+) progenitor cell counts were analyzed by flow cytometry. We found preserved CD34+ cell counts in CSL-111-treated subjects at follow-up (change of 1.6%), while the number of CD34+ cells was reduced (-32.9%) in controls (p = 0.017 between groups). The level of circulating SDF-1 (stromal cell-derived factor-1), a chemokine involved in progenitor cell recruitment, increased significantly (change of 21.5%) in controls, while it remained unchanged in CSL-111-treated patients (p = 0.031 between groups). In vitro exposure to CSL-111 of early EPC isolated from healthy volunteers significantly increased CD34+ cells, reduced early EPC apoptosis and enhanced their migration capacity towards SDF-1. Conclusions: The relative increase in circulating CD34+ cells and the low SDF-1 levels observed following rHDL infusions in ACS patients point towards a role of rHDL in cardiovascular repair mechanisms

    Monoclonal antibodies against human CD34 antigens do not cross-react with ovine umbilical cord blood cells

    Get PDF
    CD34 is a cell surface glycoprotein expressed by hematopoietic progenitors and endothelial cells. It is widely used in the clinic for isolation of human hematopoietic stem cells. In recent years large animals are gaining increasing importance in biomedical research for the study and therapy of human diseases. Sheep has proved to be an useful experimental model for preclinical trials in transplantation procedures. Unfortunately, the lack of specie-specific monoclonal antibodies (MABS) recognizing hemopoietic progenitor cells hampers the use of this animal in experimental hematology. The aim of this paper was to determine whether commercial monoclonal antibodies specific for human CD34 molecule could cross-react with hematopoietic progenitor cells (HPC) present in sheep umbilical cord blood (UCB). Six anti-human CD34 MABS, recognizing the three different epitope classes, were tested in flow cytometry on purified mononuclear cells (MNC) isolated from cord blood of both species. None of the MABS used in this trial seemed to be able to identify HPC from sheep UCB. These data suggest that the panel of monoclonal antibodies used for cross reactivity detection has to be expanded with recently produced reagents. Further studies should be directed towards the production of ovine specific anti CD34 MABS

    Uptake of synthetic low density lipoprotein by leukemic stem cells — a potential stem cell targeted drug delivery strategy

    Get PDF
    Chronic Myeloid Leukemia (CML) stem/progenitor cells, which over-express Bcr-Abl, respond to imatinib by a reversible block in proliferation without significant apoptosis. As a result, patients are unlikely to be cured owing to the persistence of leukemic quiescent stem cells (QSC) capable of initiating relapse. Previously, we have reported that intracellular levels of imatinib in primary primitive CML cells (CD34<sup>+</sup>38<sup>lo/−</sup>), are significantly lower than in CML progenitor cells (total CD34<sup>+</sup>) and leukemic cell lines. The aim of this study was to determine if potentially sub-therapeutic intracellular drug concentrations in persistent leukemic QSC may be overcome by targeted drug delivery using synthetic Low Density Lipoprotein (sLDL) particles. As a first step towards this goal, however, the extent of uptake of sLDL by leukemic cell lines and CML patient stem/progenitor cells was investigated. Results with non-drug loaded particles have shown an increased and preferential uptake of sLDL by Bcr-Abl positive cell lines in comparison to Bcr-Abl negative. Furthermore, CML CD34<sup>+</sup> and primitive CD34<sup>+</sup>38<sup>lo/−</sup> cells accumulated significantly higher levels of sLDL when compared with non-CML CD34<sup>+</sup> cells. Thus, drug-loading the sLDL nanoparticles could potentially enhance intracellular drug concentrations in primitive CML cells and thus aid their eradication

    Sirt1 expression is associated with CD31 expression in blood cells from patients with chronic obstructive pulmonary disease

    Get PDF
    Background: Cigarette smoke induced oxidative stress has been shown to reduce silent information regulator 1 (Sirt1) levels in lung tissue from smokers and patients with COPD patients. Sirt1 is known to inhibit endothelial senescence and may play a protective role in vascular cells. Endothelial progenitor cells (EPCs) are mobilized into circulation under various pathophysiological conditions, and are thought to play an important role in tissue repair in chronic obstructive lung disease (COPD). Therefore, Sirt1 and EPC-associated mRNAs were measured in blood samples from patients with COPD and from cultured CD34+ progenitor cells to examine whether these genes are associated with COPD development. Methods: This study included 358 patients with a smoking history of more than 10 pack-years. RNA was extracted from blood samples and from CD34+ progenitor cells treated with cigarette smoke extract (CSE), followed by assessment of CD31, CD34, Sirt1 mRNA, miR-34a, and miR-126-3p expression by real-time RT-PCR. Results: The expression of CD31, CD34, Sirt1 mRNAs, and miR-126-3p decreased and that of miR-34a increased in moderate COPD compared with that in control smokers. However, no significant differences in these genes were observed in blood cells from patients with severe COPD compared with those in control smokers. CSE significantly decreased Sirt1 and increased miR-34a expression in cultured progenitor cells. Conclusion: Sirt1 expression in blood cells from patients with COPD could be a biomarker for disease stability in patients with moderate COPD. MiR-34a may participate in apoptosis and/or senescence of EPCs in smokers. Decreased expression of CD31, CD34, and miR-126-3p potentially represents decreased numbers of EPCs in blood cell from patients with COPD

    Reactivating Fetal Hemoglobin Expression in Human Adult Erythroblasts Through BCL11A Knockdown Using Targeted Endonucleases.

    Get PDF
    We examined the efficiency, specificity, and mutational signatures of zinc finger nucleases (ZFNs), transcriptional activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 systems designed to target the gene encoding the transcriptional repressor BCL11A, in human K562 cells and human CD34+ progenitor cells. ZFNs and TALENs were delivered as in vitro transcribed mRNA through electroporation; CRISPR/Cas9 was codelivered by Cas9 mRNA with plasmid-encoded guideRNA (gRNA) (pU6.g1) or in vitro transcribed gRNA (gR.1). Analyses of efficacy revealed that for these specific reagents and the delivery methods used, the ZFNs gave rise to more allelic disruption in the targeted locus compared to the TALENs and CRISPR/Cas9, which was associated with increased levels of fetal hemoglobin in erythroid cells produced in vitro from nuclease-treated CD34+ cells. Genome-wide analysis to evaluate the specificity of the nucleases revealed high specificity of this specific ZFN to the target site, while specific TALENs and CRISPRs evaluated showed off-target cleavage activity. ZFN gene-edited CD34+ cells had the capacity to engraft in NOD-PrkdcSCID-IL2Rγnull mice, while retaining multi-lineage potential, in contrast to TALEN gene-edited CD34+ cells. CRISPR engraftment levels mirrored the increased relative plasmid-mediated toxicity of pU6.g1/Cas9 in hematopoietic stem/progenitor cells (HSPCs), highlighting the value for the further improvements of CRISPR/Cas9 delivery in primary human HSPCs
    • …
    corecore