54,554 research outputs found

    Branch-depth: Generalizing tree-depth of graphs

    Get PDF
    We present a concept called the branch-depth of a connectivity function, that generalizes the tree-depth of graphs. Then we prove two theorems showing that this concept aligns closely with the notions of tree-depth and shrub-depth of graphs as follows. For a graph G=(V,E)G = (V,E) and a subset AA of EE we let λG(A)\lambda_G (A) be the number of vertices incident with an edge in AA and an edge in EAE \setminus A. For a subset XX of VV, let ρG(X)\rho_G(X) be the rank of the adjacency matrix between XX and VXV \setminus X over the binary field. We prove that a class of graphs has bounded tree-depth if and only if the corresponding class of functions λG\lambda_G has bounded branch-depth and similarly a class of graphs has bounded shrub-depth if and only if the corresponding class of functions ρG\rho_G has bounded branch-depth, which we call the rank-depth of graphs. Furthermore we investigate various potential generalizations of tree-depth to matroids and prove that matroids representable over a fixed finite field having no large circuits are well-quasi-ordered by the restriction.Comment: 34 pages, 2 figure

    The power of Sherali-Adams relaxations for general-valued CSPs

    Full text link
    We give a precise algebraic characterisation of the power of Sherali-Adams relaxations for solvability of valued constraint satisfaction problems to optimality. The condition is that of bounded width which has already been shown to capture the power of local consistency methods for decision CSPs and the power of semidefinite programming for robust approximation of CSPs. Our characterisation has several algorithmic and complexity consequences. On the algorithmic side, we show that several novel and many known valued constraint languages are tractable via the third level of the Sherali-Adams relaxation. For the known languages, this is a significantly simpler algorithm than the previously obtained ones. On the complexity side, we obtain a dichotomy theorem for valued constraint languages that can express an injective unary function. This implies a simple proof of the dichotomy theorem for conservative valued constraint languages established by Kolmogorov and Zivny [JACM'13], and also a dichotomy theorem for the exact solvability of Minimum-Solution problems. These are generalisations of Minimum-Ones problems to arbitrary finite domains. Our result improves on several previous classifications by Khanna et al. [SICOMP'00], Jonsson et al. [SICOMP'08], and Uppman [ICALP'13].Comment: Full version of an ICALP'15 paper (arXiv:1502.05301

    Branch-depth: Generalizing tree-depth of graphs

    Full text link
    We present a concept called the branch-depth of a connectivity function, that generalizes the tree-depth of graphs. Then we prove two theorems showing that this concept aligns closely with the notions of tree-depth and shrub-depth of graphs as follows. For a graph G=(V,E)G = (V,E) and a subset AA of EE we let λG(A)\lambda_G (A) be the number of vertices incident with an edge in AA and an edge in EAE \setminus A. For a subset XX of VV, let ρG(X)\rho_G(X) be the rank of the adjacency matrix between XX and VXV \setminus X over the binary field. We prove that a class of graphs has bounded tree-depth if and only if the corresponding class of functions λG\lambda_G has bounded branch-depth and similarly a class of graphs has bounded shrub-depth if and only if the corresponding class of functions ρG\rho_G has bounded branch-depth, which we call the rank-depth of graphs. Furthermore we investigate various potential generalizations of tree-depth to matroids and prove that matroids representable over a fixed finite field having no large circuits are well-quasi-ordered by the restriction.Comment: 36 pages, 2 figures. Final versio

    Boolean dimension and tree-width

    Full text link
    The dimension is a key measure of complexity of partially ordered sets. Small dimension allows succinct encoding. Indeed if PP has dimension dd, then to know whether xyx \leq y in PP it is enough to check whether xyx\leq y in each of the dd linear extensions of a witnessing realizer. Focusing on the encoding aspect Ne\v{s}et\v{r}il and Pudl\'{a}k defined a more expressive version of dimension. A poset PP has boolean dimension at most dd if it is possible to decide whether xyx \leq y in PP by looking at the relative position of xx and yy in only dd permutations of the elements of PP. We prove that posets with cover graphs of bounded tree-width have bounded boolean dimension. This stays in contrast with the fact that there are posets with cover graphs of tree-width three and arbitrarily large dimension. This result might be a step towards a resolution of the long-standing open problem: Do planar posets have bounded boolean dimension?Comment: one more reference added; paper revised along the suggestion of three reviewer

    Classical simulation versus universality in measurement based quantum computation

    Get PDF
    We investigate for which resource states an efficient classical simulation of measurement based quantum computation is possible. We show that the Schmidt--rank width, a measure recently introduced to assess universality of resource states, plays a crucial role in also this context. We relate Schmidt--rank width to the optimal description of states in terms of tree tensor networks and show that an efficient classical simulation of measurement based quantum computation is possible for all states with logarithmically bounded Schmidt--rank width (with respect to the system size). For graph states where the Schmidt--rank width scales in this way, we efficiently construct the optimal tree tensor network descriptions, and provide several examples. We highlight parallels in the efficient description of complex systems in quantum information theory and graph theory.Comment: 16 pages, 4 figure

    Crossing-critical graphs with large maximum degree

    Get PDF
    A conjecture of Richter and Salazar about graphs that are critical for a fixed crossing number kk is that they have bounded bandwidth. A weaker well-known conjecture of Richter is that their maximum degree is bounded in terms of kk. In this note we disprove these conjectures for every k171k\ge 171, by providing examples of kk-crossing-critical graphs with arbitrarily large maximum degree
    corecore