2,273 research outputs found

    A criterion for separating process calculi

    Get PDF
    We introduce a new criterion, replacement freeness, to discern the relative expressiveness of process calculi. Intuitively, a calculus is strongly replacement free if replacing, within an enclosing context, a process that cannot perform any visible action by an arbitrary process never inhibits the capability of the resulting process to perform a visible action. We prove that there exists no compositional and interaction sensitive encoding of a not strongly replacement free calculus into any strongly replacement free one. We then define a weaker version of replacement freeness, by only considering replacement of closed processes, and prove that, if we additionally require the encoding to preserve name independence, it is not even possible to encode a non replacement free calculus into a weakly replacement free one. As a consequence of our encodability results, we get that many calculi equipped with priority are not replacement free and hence are not encodable into mainstream calculi like CCS and pi-calculus, that instead are strongly replacement free. We also prove that variants of pi-calculus with match among names, pattern matching or polyadic synchronization are only weakly replacement free, hence they are separated both from process calculi with priority and from mainstream calculi.Comment: In Proceedings EXPRESS'10, arXiv:1011.601

    Priorities Without Priorities: Representing Preemption in Psi-Calculi

    Full text link
    Psi-calculi is a parametric framework for extensions of the pi-calculus with data terms and arbitrary logics. In this framework there is no direct way to represent action priorities, where an action can execute only if all other enabled actions have lower priority. We here demonstrate that the psi-calculi parameters can be chosen such that the effect of action priorities can be encoded. To accomplish this we define an extension of psi-calculi with action priorities, and show that for every calculus in the extended framework there is a corresponding ordinary psi-calculus, without priorities, and a translation between them that satisfies strong operational correspondence. This is a significantly stronger result than for most encodings between process calculi in the literature. We also formally prove in Nominal Isabelle that the standard congruence and structural laws about strong bisimulation hold in psi-calculi extended with priorities.Comment: In Proceedings EXPRESS/SOS 2014, arXiv:1408.127

    Self-stabilizing cluster routing in Manet using link-cluster architecture

    Full text link
    We design a self-stabilizing cluster routing algorithm based on the link-cluster architecture of wireless ad hoc networks. The network is divided into clusters. Each cluster has a single special node, called a clusterhead that contains the routing information about inter and intra-cluster communication. A cluster is comprised of all nodes that choose the corresponding clusterhead as their leader. The algorithm consists of two main tasks. First, the set of special nodes (clusterheads) is elected such that it models the link-cluster architecture: any node belongs to a single cluster, it is within two hops of the clusterhead, it knows the direct neighbor on the shortest path towards the clusterhead, and there exist no two adjacent clusterheads. Second, the routing tables are maintained by the clusterheads to store information about nodes both within and outside the cluster. There are two advantages of maintaining routing tables only in the clusterheads. First, as no two neighboring nodes are clusterheads (as per the link-cluster architecture), there is no need to check the consistency of the routing tables. Second, since all other nodes have significantly less work (they only forward messages), they use much less power than the clusterheads. Therefore, if a clusterhead runs out of power, a neighboring node (that is not a clusterhead) can accept the role of a clusterhead. (Abstract shortened by UMI.)

    The Area of Freedom, Security and Justice ten years on: Successes and future challenges under the Stockholm Programme. CEPS Paperbacks. June 2010

    Get PDF
    This book celebrates the tenth anniversary of the Area of Freedom, Security and Justice (AFSJ) by bringing together the views of key practitioners and policy-makers who have played an outstanding role in thinking about and shaping EU policies on freedom, security and justice. Ten years ago, the member states transferred competences to the EU for law and policy-making in the fields of immigration, asylum and border controls, and began the transfer process for criminal justice and policing. This decade of European cooperation on AFSJ policies has experienced very dynamic convergence, the enactment of a large body of European law and the setting-up of numerous EU agencies working in these domains. Such dynamism in policy-making has not been without challenges and vulnerabilities, however. As this collective volume shows, the main dilemmas that lie ahead relate to an effective (while more plural) institutional framework under the Treaty of Lisbon, stronger judicial scrutiny through a greater role for national courts and the Court of Justice in Luxembourg, better mechanisms for evaluating and monitoring the implementation of EU AFSJ law and a more solid fundamental rights strategy. The contributions in this volume address the progress achieved so far in these policy areas, identify the challenges for future European cooperation in the AFSJ and put forward possible paths for making more progress in the next generation of the EU’s AFSJ

    A Calculus for Orchestration of Web Services

    Get PDF
    Service-oriented computing, an emerging paradigm for distributed computing based on the use of services, is calling for the development of tools and techniques to build safe and trustworthy systems, and to analyse their behaviour. Therefore, many researchers have proposed to use process calculi, a cornerstone of current foundational research on specification and analysis of concurrent, reactive, and distributed systems. In this paper, we follow this approach and introduce CWS, a process calculus expressly designed for specifying and combining service-oriented applications, while modelling their dynamic behaviour. We show that CWS can model all the phases of the life cycle of service-oriented applications, such as publication, discovery, negotiation, orchestration, deployment, reconfiguration and execution. We illustrate the specification style that CWS supports by means of a large case study from the automotive domain and a number of more specific examples drawn from it

    Nondeterminism and Guarded Commands

    Full text link
    The purpose of this paper is to discuss the relevance of nondeterminism in computer science, with a special emphasis on Dijkstra's guarded commands language.Comment: 34 pages. This is authors' version of Chapter 8 of the book K.R. Apt and C.A.R. Hoare (editors), Edsger Wybe Dijkstra: His Life, Work, and Legacy, volume 45 of ACM Books. ACM/Morgan & Claypool, 202
    corecore