2,576 research outputs found

    Axiomatizing Flat Iteration

    Full text link
    Flat iteration is a variation on the original binary version of the Kleene star operation P*Q, obtained by restricting the first argument to be a sum of atomic actions. It generalizes prefix iteration, in which the first argument is a single action. Complete finite equational axiomatizations are given for five notions of bisimulation congruence over basic CCS with flat iteration, viz. strong congruence, branching congruence, eta-congruence, delay congruence and weak congruence. Such axiomatizations were already known for prefix iteration and are known not to exist for general iteration. The use of flat iteration has two main advantages over prefix iteration: 1.The current axiomatizations generalize to full CCS, whereas the prefix iteration approach does not allow an elimination theorem for an asynchronous parallel composition operator. 2.The greater expressiveness of flat iteration allows for much shorter completeness proofs. In the setting of prefix iteration, the most convenient way to obtain the completeness theorems for eta-, delay, and weak congruence was by reduction to the completeness theorem for branching congruence. In the case of weak congruence this turned out to be much simpler than the only direct proof found. In the setting of flat iteration on the other hand, the completeness theorems for delay and weak (but not eta-) congruence can equally well be obtained by reduction to the one for strong congruence, without using branching congruence as an intermediate step. Moreover, the completeness results for prefix iteration can be retrieved from those for flat iteration, thus obtaining a second indirect approach for proving completeness for delay and weak congruence in the setting of prefix iteration.Comment: 15 pages. LaTeX 2.09. Filename: flat.tex.gz. On A4 paper print with: dvips -t a4 -O -2.15cm,-2.22cm -x 1225 flat. For US letter with: dvips -t letter -O -0.73in,-1.27in -x 1225 flat. More info at http://theory.stanford.edu/~rvg/abstracts.html#3

    Symbolic semantics and bisimulation for full LOTOS

    Get PDF
    No abstract avaliabl

    Musings on Encodings and Expressiveness

    Get PDF
    This paper proposes a definition of what it means for one system description language to encode another one, thereby enabling an ordering of system description languages with respect to expressive power. I compare the proposed definition with other definitions of encoding and expressiveness found in the literature, and illustrate it on a case study: comparing the expressive power of CCS and CSP.Comment: In Proceedings EXPRESS/SOS 2012, arXiv:1208.244

    Dynamic Congruence vs. Progressing Bisimulation for CCS

    No full text
    Weak Observational Congruence (woc) defined on CCS agents is not a bisimulation since it does not require two states reached by bisimilar computations of woc agents to be still woc, e.g. \alpha.\tau.\beta.nil and \alpha.\beta.nil are woc but \tau.\beta.nil and \beta.nil are not. This fact prevent us from characterizing CCS semantics (when \tau is considered invisible) as a final algebra, since the semantic function would induce an equivalence over the agents that is both a congruence and a bisimulation. In the paper we introduce a new behavioural equivalence for CCS agents, which is the coarsest among those bisimulations which are also congruences. We call it Dynamic Observational Congruence because it expresses a natural notion of equivalence for concurrent systems required to simulate each other in the presence of dynamic, i.e. run time, (re)configurations. We provide an algebraic characterization of Dynamic Congruence in terms of a universal property of finality. Furthermore we introduce Progressing Bisimulation, which forces processes to simulate each other performing explicit steps. We provide an algebraic characterization of it in terms of finality, two logical characterizations via modal logic in the style of HML and a complete axiomatization for finite agents (consisting of the axioms for Strong Observational Congruence and of two of the three Milner's Ļ„\tau-laws). Finally, we prove that Dynamic Congruence and Progressing Bisimulation coincide for CCS agents

    Context-dependent bisimulation between processes

    Get PDF
    • ā€¦
    corecore