358 research outputs found

    PerfWeb: How to Violate Web Privacy with Hardware Performance Events

    Full text link
    The browser history reveals highly sensitive information about users, such as financial status, health conditions, or political views. Private browsing modes and anonymity networks are consequently important tools to preserve the privacy not only of regular users but in particular of whistleblowers and dissidents. Yet, in this work we show how a malicious application can infer opened websites from Google Chrome in Incognito mode and from Tor Browser by exploiting hardware performance events (HPEs). In particular, we analyze the browsers' microarchitectural footprint with the help of advanced Machine Learning techniques: k-th Nearest Neighbors, Decision Trees, Support Vector Machines, and in contrast to previous literature also Convolutional Neural Networks. We profile 40 different websites, 30 of the top Alexa sites and 10 whistleblowing portals, on two machines featuring an Intel and an ARM processor. By monitoring retired instructions, cache accesses, and bus cycles for at most 5 seconds, we manage to classify the selected websites with a success rate of up to 86.3%. The results show that hardware performance events can clearly undermine the privacy of web users. We therefore propose mitigation strategies that impede our attacks and still allow legitimate use of HPEs

    PALPAS - PAsswordLess PAssword Synchronization

    Full text link
    Tools that synchronize passwords over several user devices typically store the encrypted passwords in a central online database. For encryption, a low-entropy, password-based key is used. Such a database may be subject to unauthorized access which can lead to the disclosure of all passwords by an offline brute-force attack. In this paper, we present PALPAS, a secure and user-friendly tool that synchronizes passwords between user devices without storing information about them centrally. The idea of PALPAS is to generate a password from a high entropy secret shared by all devices and a random salt value for each service. Only the salt values are stored on a server but not the secret. The salt enables the user devices to generate the same password but is statistically independent of the password. In order for PALPAS to generate passwords according to different password policies, we also present a mechanism that automatically retrieves and processes the password requirements of services. PALPAS users need to only memorize a single password and the setup of PALPAS on a further device demands only a one-time transfer of few static data.Comment: An extended abstract of this work appears in the proceedings of ARES 201

    A Holistic Approach to Service Survivability

    Get PDF
    We present SABER (Survivability Architecture: Block, Evade, React), a proposed survivability architecture that blocks, evades and reacts to a variety of attacks by using several security and survivability mechanisms in an automated and coordinated fashion. Contrary to the ad hoc manner in which contemporary survivable systems are built--using isolated, independent security mechanisms such as firewalls, intrusion detection systems and software sandboxes--SABER integrates several different technologies in an attempt to provide a unified framework for responding to the wide range of attacks malicious insiders and outsiders can launch. This coordinated multi-layer approach will be capable of defending against attacks targeted at various levels of the network stack, such as congestion-based DoS attacks, software-based DoS or code-injection attacks, and others. Our fundamental insight is that while multiple lines of defense are useful, most conventional, uncoordinated approaches fail to exploit the full range of available responses to incidents. By coordinating the response, the ability to survive even in the face of successful security breaches increases substantially. We discuss the key components of SABER, how they will be integrated together, and how we can leverage on the promising results of the individual components to improve survivability in a variety of coordinated attack scenarios. SABER is currently in the prototyping stages, with several interesting open research topics

    Dynamic deployment of context-aware access control policies for constrained security devices

    Get PDF
    Securing the access to a server, guaranteeing a certain level of protection over an encrypted communication channel, executing particular counter measures when attacks are detected are examples of security requirements. Such requirements are identi ed based on organizational purposes and expectations in terms of resource access and availability and also on system vulnerabilities and threats. All these requirements belong to the so-called security policy. Deploying the policy means enforcing, i.e., con guring, those security components and mechanisms so that the system behavior be nally the one speci ed by the policy. The deployment issue becomes more di cult as the growing organizational requirements and expectations generally leave behind the integration of new security functionalities in the information system: the information system will not always embed the necessary security functionalities for the proper deployment of contextual security requirements. To overcome this issue, our solution is based on a central entity approach which takes in charge unmanaged contextual requirements and dynamically redeploys the policy when context changes are detected by this central entity. We also present an improvement over the OrBAC (Organization-Based Access Control) model. Up to now, a controller based on a contextual OrBAC policy is passive, in the sense that it assumes policy evaluation triggered by access requests. Therefore, it does not allow reasoning about policy state evolution when actions occur. The modi cations introduced by our work overcome this limitation and provide a proactive version of the model by integrating concepts from action speci cation languages

    Undermining User Privacy on Mobile Devices Using AI

    Full text link
    Over the past years, literature has shown that attacks exploiting the microarchitecture of modern processors pose a serious threat to the privacy of mobile phone users. This is because applications leave distinct footprints in the processor, which can be used by malware to infer user activities. In this work, we show that these inference attacks are considerably more practical when combined with advanced AI techniques. In particular, we focus on profiling the activity in the last-level cache (LLC) of ARM processors. We employ a simple Prime+Probe based monitoring technique to obtain cache traces, which we classify with Deep Learning methods including Convolutional Neural Networks. We demonstrate our approach on an off-the-shelf Android phone by launching a successful attack from an unprivileged, zeropermission App in well under a minute. The App thereby detects running applications with an accuracy of 98% and reveals opened websites and streaming videos by monitoring the LLC for at most 6 seconds. This is possible, since Deep Learning compensates measurement disturbances stemming from the inherently noisy LLC monitoring and unfavorable cache characteristics such as random line replacement policies. In summary, our results show that thanks to advanced AI techniques, inference attacks are becoming alarmingly easy to implement and execute in practice. This once more calls for countermeasures that confine microarchitectural leakage and protect mobile phone applications, especially those valuing the privacy of their users

    SPM: Source Privacy for Mobile Ad Hoc Networks

    Get PDF

    A Survey on Routing in Anonymous Communication Protocols

    No full text
    The Internet has undergone dramatic changes in the past 15 years, and now forms a global communication platform that billions of users rely on for their daily activities. While this transformation has brought tremendous benefits to society, it has also created new threats to online privacy, ranging from profiling of users for monetizing personal information to nearly omnipotent governmental surveillance. As a result, public interest in systems for anonymous communication has drastically increased. Several such systems have been proposed in the literature, each of which offers anonymity guarantees in different scenarios and under different assumptions, reflecting the plurality of approaches for how messages can be anonymously routed to their destination. Understanding this space of competing approaches with their different guarantees and assumptions is vital for users to understand the consequences of different design options. In this work, we survey previous research on designing, developing, and deploying systems for anonymous communication. To this end, we provide a taxonomy for clustering all prevalently considered approaches (including Mixnets, DC-nets, onion routing, and DHT-based protocols) with respect to their unique routing characteristics, deployability, and performance. This, in particular, encompasses the topological structure of the underlying network; the routing information that has to be made available to the initiator of the conversation; the underlying communication model; and performance-related indicators such as latency and communication layer. Our taxonomy and comparative assessment provide important insights about the differences between the existing classes of anonymous communication protocols, and it also helps to clarify the relationship between the routing characteristics of these protocols, and their performance and scalability

    Technical Privacy Metrics: a Systematic Survey

    Get PDF
    The file attached to this record is the author's final peer reviewed versionThe goal of privacy metrics is to measure the degree of privacy enjoyed by users in a system and the amount of protection offered by privacy-enhancing technologies. In this way, privacy metrics contribute to improving user privacy in the digital world. The diversity and complexity of privacy metrics in the literature makes an informed choice of metrics challenging. As a result, instead of using existing metrics, new metrics are proposed frequently, and privacy studies are often incomparable. In this survey we alleviate these problems by structuring the landscape of privacy metrics. To this end, we explain and discuss a selection of over eighty privacy metrics and introduce categorizations based on the aspect of privacy they measure, their required inputs, and the type of data that needs protection. In addition, we present a method on how to choose privacy metrics based on nine questions that help identify the right privacy metrics for a given scenario, and highlight topics where additional work on privacy metrics is needed. Our survey spans multiple privacy domains and can be understood as a general framework for privacy measurement
    • …
    corecore