3 research outputs found

    Toward efficient and secure public auditing for dynamic big data storage on cloud

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Cloud and Big Data are two of the most attractive ICT research topics that have emerged in recent years. Requirements of big data processing are now everywhere, while the pay-as-you-go model of cloud systems is especially cost efficient in terms of processing big data applications. However, there are still concerns that hinder the proliferation of cloud, and data security/privacy is a top concern for data owners wishing to migrate their applications into the cloud environment. Compared to users of conventional systems, cloud users need to surrender the local control of their data to cloud servers. Another challenge for big data is the data dynamism which exists in most big data applications. Due to the frequent updates, efficiency becomes a major issue in data management. As security always brings compromises in efficiency, it is difficult but nonetheless important to investigate how to efficiently address security challenges over dynamic cloud data. Data integrity is an essential aspect of data security. Except for server-side integrity protection mechanisms, verification from a third-party auditor is of equal importance because this enables users to verify the integrity of their data through the auditors at any user-chosen timeslot. This type of verification is also named 'public auditing' of data. Existing public auditing schemes allow the integrity of a dataset stored in cloud to be externally verified without retrieval of the whole original dataset. However, in practice, there are many challenges that hinder the application of such schemes. To name a few of these, first, the server still has to aggregate a proof with the cloud controller from data blocks that are distributedly stored and processed on cloud instances and this means that encryption and transfer of these data within the cloud will become time-consuming. Second, security flaws exist in the current designs. The verification processes are insecure against various attacks and this leads to concerns about deploying these schemes in practice. Third, when the dataset is large, auditing of dynamic data becomes costly in terms of communication and storage. This is especially the case for a large number of small data updates and data updates on multi-replica cloud data storage. In this thesis, the research problem of dynamic public data auditing in cloud is systematically investigated. After analysing the research problems, we systematically address the problems regarding secure and efficient public auditing of dynamic big data in cloud by developing, testing and publishing a series of security schemes and algorithms for secure and efficient public auditing of dynamic big data storage on cloud. Specifically, our work focuses on the following aspects: cloud internal authenticated key exchange, authorisation on third-party auditor, fine-grained update support, index verification, and efficient multi-replica public auditing of dynamic data. To the best of our knowledge, this thesis presents the first series of work to systematically analysis and to address this research problem. Experimental results and analyses show that the solutions that are presented in this thesis are suitable for auditing dynamic big data storage on cloud. Furthermore, our solutions represent significant improvements in cloud efficiency and security

    MuR-DPA: Top-down Levelled Multi-replica Merkle Hash Tree Based Secure Public Auditing for Dynamic Big Data Storage on Cloud

    Get PDF
    Big data and its applications are attracting more and more research interests in recent years. As the new generation distributed computing platform, cloud computing is believed to be the most potent platform. With the data no longer under users\u27 direct control, data security in cloud computing is becoming one of the most obstacles of the proliferation of cloud. In order to improve service reliability and availability, storing multiple replicas along with original datasets is a common strategy for cloud service providers. Public data auditing schemes allow users to verify their outsourced data storage without having to retrieve the whole dataset. However, existing data auditing techniques suffers from efficiency and security problems. First, for dynamic datasets with multiple replicas, the communication overhead for update verification is very large, because verification for each update requires O(logn) communication complexity and update of all replicas. Second, to the best of our knowledge, there is no existing integrity verification schemes can provide public auditing and authentication of block indices at the same time. Without authentication of block indices, the server can build a valid proof based on data blocks other than the block client requested to verify. In order to address these problems, in this paper, we present a novel public auditing scheme named MuR-DPA. The new scheme incorporated a novel authenticated data structure based on the Merkle hash tree, which we name as MR-MHT. For support of full dynamic data updates, authentication of block indices and efficient verification of updates for multiple replicas at the same time, the level values of nodes in MR-MHT are generated in a top-down order, and all replica blocks for each data block are organized into a same replica sub-tree. Compared to existing integrity verification and public auditing schemes, theoretical analysis and experimental results show that the MuR-DPA scheme can not only incur much less communication overhead for both update and verification of datasets with multiple replicas, but also provide enhanced security against dishonest cloud service providers

    CCBKE – Session Key Negotiation for Fast and Secure Scheduling of Scientific Applications in Cloud Computing

    Get PDF
    Instead of purchasing and maintaining their own computing infrastructure, scientists can now run data-intensive scientific applications in a hybrid environment such as cloud computing by facilitating its vast storage and computation capabilities. During the scheduling of such scientific applications for execution, various computation data flows will happen between the controller and computing server instances. Amongst various quality-of-service (QoS) metrics, data security is always one of the greatest concerns to scientists because their data may be intercepted or stolen by malicious parties during those data flows, especially for less secure hybrid cloud systems. An existing typical method for addressing this issue is to apply Internet Key Exchange (IKE) scheme to generate and exchange session keys, and then to apply these keys for performing symmetric-key encryption which will encrypt those data flows. However, the IKE scheme suffers from low efficiency due to its low performance of asymmetric-key cryptological operations over a large amount of data and high-density operations which are exactly the characteristics of scientific applications. In this paper, we propose Cloud Computing Background Key Exchange (CCBKE), a novel authenticated key exchange scheme that aims at efficient security-aware scheduling of scientific applications. Our scheme is designed based on randomness-reuse strategy and Internet Key Exchange (IKE) scheme. Theoretical analyses and experimental results demonstrate that, compared with the IKE scheme, our CCBKE scheme can significantly improve the efficiency by dramatically reducing time consumption and computation load without sacrificing the level of security
    corecore