24 research outputs found

    Networking protocols for long life wireless sensor networks

    Get PDF
    My original contribution to knowledge is the creation of a WSN system that further improves the functionality of existing technology, whilst achieving improved power consumption and reliability. This thesis concerns the development of industrially applicable wireless sensor networks that are low-power, reliable and latency aware. This work aims to improve upon the state of the art in networking protocols for low-rate multi-hop wireless sensor networks. Presented is an application-driven co-design approach to the development of such a system. Starting with the physical layer, hardware was designed to meet industry specified requirements. The end system required further investigation of communications protocols that could achieve the derived application-level system performance specifications. A CSMA/TDMA hybrid MAC protocol was developed, leveraging numerous techniques from the literature and novel optimisations. It extends the current art with respect to power consumption for radio duty-cycled applications, and reliability, in dense wireless sensor networks, whilst respecting latency bounds. Specifically, it provides 100% packet delivery for 11 concurrent senders transmitting towards a single radio duty cycled sink-node. This is representative of an order of magnitude improvement over the comparable art, considering MAC-only mechanisms. A novel latency-aware routing protocol was developed to exploit the developed hardware and MAC protocol. It is based on a new weighted objective function with multiple fail safe mechanisms to ensure extremely high reliability and robustness. The system was empirically evaluated on two hardware platforms. These are the application-specific custom 868 MHz node and the de facto community-standard TelosB. Extensive empirical comparative performance analyses were conducted against the relevant art to demonstrate the advances made. The resultant system is capable of exceeding 10-year battery life, and exhibits reliability performance in excess of 99.9%

    Dynamic deployment of applications in wireless sensor networks

    Get PDF
    Over the past decades, the progress inWirelss Sensor Network (WSN) technology, both in terms of processing capability and energy consumption reduction, has evolved WSNs into complex systems that can gather information about the monitored environment and make prompt and intelligent decisions. In the beginning, military applications drove the research and development of WSNs, with large-scale acoustic systems for underwater surveillance, radar systems for the collection of data on air targets, and Unattended Ground Sensor (UGS) systems for ground target detection. Typical civil WSNs are basically not complex monitoring systems, whose applications encompass environment and habitat monitoring, infrastructure security and terror threat alerts, industrial sensing for machine health monitoring, and traffic control. In these WSNs, sensors gather the required information, mostly according to a fixed temporal schedule, and send it to the sink, which interfaces with a server or a computer. Only at this point data from sensors can be processed, before being stored. Recent advances in Micro-Eletro-Mechanical Systems (MEMS), low power transceivers and microprocessor dimensions have led to cost effective tiny sensor devices that combine sensing with computation, storage and communication. These developments have contributed to the efforts on interfacing WSNs with other technologies, enabling them to be one of the pillars of the Internet of Things (IoT) paradigm. In this context, WSNs take a key role in application areas such as domotics, assisted living, e-health, enhanced learning automation and industrial manufacturing logistics, business/process management, and intelligent transportation of people and goods. In doing so, a horizontal ambient intelligent infrastructure is made possible, wherein the sensing, computing and communicating tasks can be completed using programmable middleware that enables quick deployment of different applications and services. One of the major issues with WSNs is the energy scarcity, due to the fact that sensors are mainly battery powered. In several cases, nodes are deployed in hostile or unpractical environments, such as underground or underwater, where replacing battery could be an unfeasible operation. Therefore, extending the network lifetime is a crucial concern. Lifetime improvement has been approached by many recent studies, from different points of view, including node deployment, routing schemes, and data aggregation Recently, with the consistent increase in WSN application complexity, the way distributed applications are deployed in WSNs is another important component that affects the network lifetime. For instance, incorrect execution of data processing in some nodes or the transmission of big amounts of data with low entropy in some nodes could heavily deplete battery energy without any benefit. Indeed, application tasks are usually assigned statically to WSN nodes, which is an approach in contrast with the dynamic nature of future WSNs, where nodes frequently join and leave the network and applications change over the time. This brings to issue talked in this thesis, which is defined as follows. Dynamic deployment of distributed applications in WSNs: given the requirements of WSN applications, mostly in terms of execution time and data processing, the optimal allocation of tasks among the nodes should be identified so as to reach the application target and to satisfy the requirements while optimizing the network performance in terms of network lifetime. This issue should be continuously addressed to dynamically adapt the system to changes in terms of application requirements and network topology

    Energy-efficient and lifetime aware routing in WSNs

    Get PDF
    Network lifetime is an important performance metric in Wireless Sensor Networks (WSNs). Transmission Power Control (TPC) is a well-established method to minimise energy consumption in transmission in order to extend node lifetime and, consequently, lead to solutions that help extend network lifetime. The accurate lifetime estimation of sensor nodes is useful for routing to make more energy-efficient decisions and prolong lifetime. This research proposes an Energy-Efficient TPC (EETPC) mechanism using the measured Received Signal Strength (RSS) to calculate the ideal transmission power. This includes the investigation of the impact factors on RSS, such as distance, height above ground, multipath environment, the capability of node, noise and interference, and temperature. Furthermore, a Dynamic Node Lifetime Estimation (DNLE) technique for WSNs is also presented, including the impact factors on node lifetime, such as battery type, model, brand, self-discharge, discharge rate, age, charge cycles, and temperature. In addition, an Energy-Efficient and Lifetime Aware Routing (EELAR) algorithm is designed and developed for prolonging network lifetime in multihop WSNs. The proposed routing algorithm includes transmission power and lifetime metrics for path selection in addition to the Expected Transmission Count (ETX) metric. Both simulation and real hardware testbed experiments are used to verify the effectiveness of the proposed schemes. The simulation experiments run on the AVRORA simulator for two hardware platforms: Mica2 and MicaZ. The testbed experiments run on two real hardware platforms: the N740 NanoSensor and Mica2. The corresponding implementations are on two operating systems: Contiki and TinyOS. The proposed TPC mechanism covers those investigated factors and gives an overall performance better than the existing techniques, i.e. it gives lower packet loss and power consumption rates, while delays do not significantly increase. It can be applied for single-hop with multihoming and multihop networks. Using the DNLE technique, node lifetime can be predicted more accurately, which can be applied for both static and dynamic loads. EELAR gives the best performance on packet loss rate, average node lifetime and network lifetime compared to the other algorithms and no significant difference is found between each algorithm with the packet delay
    corecore