8,926 research outputs found

    Validity of the Cauchy-Born rule applied to discrete cellular-scale models of biological tissues.

    Get PDF
    The development of new models of biological tissues that consider cells in a discrete manner is becoming increasingly popular as an alternative to continuum methods based on partial differential equations, although formal relationships between the discrete and continuum frameworks remain to be established. For crystal mechanics, the discrete-to-continuum bridge is often made by assuming that local atom displacements can be mapped homogeneously from the mesoscale deformation gradient, an assumption known as the Cauchy-Born rule (CBR). Although the CBR does not hold exactly for noncrystalline materials, it may still be used as a first-order approximation for analytic calculations of effective stresses or strain energies. In this work, our goal is to investigate numerically the applicability of the CBR to two-dimensional cellular-scale models by assessing the mechanical behavior of model biological tissues, including crystalline (honeycomb) and noncrystalline reference states. The numerical procedure involves applying an affine deformation to the boundary cells and computing the quasistatic position of internal cells. The position of internal cells is then compared with the prediction of the CBR and an average deviation is calculated in the strain domain. For center-based cell models, we show that the CBR holds exactly when the deformation gradient is relatively small and the reference stress-free configuration is defined by a honeycomb lattice. We show further that the CBR may be used approximately when the reference state is perturbed from the honeycomb configuration. By contrast, for vertex-based cell models, a similar analysis reveals that the CBR does not provide a good representation of the tissue mechanics, even when the reference configuration is defined by a honeycomb lattice. The paper concludes with a discussion of the implications of these results for concurrent discrete and continuous modeling, adaptation of atom-to-continuum techniques to biological tissues, and model classification

    Constructed wetlands: Prediction of performance with case-based reasoning (part B)

    Get PDF
    The aim of this research was to assess the treatment efficiencies for gully pot liquor of experimental vertical- flow constructed wetland filters containing Phragmites australis (Cav.) Trin. ex Steud. (common reed) and filter media of different adsorption capacities. Six out of 12 filters received inflow water spiked with metals. For 2 years, hydrated nickel and copper nitrate were added to sieved gully pot liquor to simulate contaminated primary treated storm runoff. The findings were analyzed and discussed in a previous paper (Part A). Case-based reasoning (CBR) methods were applied to predict 5 days at 20°C N-Allylthiourea biochemical oxygen demand (BOD) and suspended solids (SS), and to demonstrate an alternative method of analyzing water quality performance indicators. The CBR method was successful in predicting if outflow concentrations were either above or below the thresholds set for water-quality variables. Relatively small case bases of approximately 60 entries are sufficient to yield relatively high predictions of compliance of at least 90% for BOD. Biochemical oxygen demand and SS are expensive to estimate, and can be cost-effectively controlled by applying CBR with the input variables turbidity and conductivity

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    Validity of the Cauchy-Born rule applied to discrete cellular-scale models of biological tissues

    Get PDF
    The development of new models of biological tissues that consider cells in a discrete manner is becoming increasingly popular as an alternative to PDE-based continuum methods, although formal relationships between the discrete and continuum frameworks remain to be established. For crystal mechanics, the discrete-to-continuum bridge is often made by assuming that local atom displacements can be mapped homogeneously from the mesoscale deformation gradient, an assumption known as the Cauchy-Born rule (CBR). Although the CBR does not hold exactly for non-crystalline materials, it may still be used as a first order approximation for analytic calculations of effective stresses or strain energies. In this work, our goal is to investigate numerically the applicability of the CBR to 2-D cellular-scale models by assessing the mechanical behaviour of model biological tissues, including crystalline (honeycomb) and non-crystalline reference states. The numerical procedure consists in precribing an affine deformation on the boundary cells and computing the position of internal cells. The position of internal cells is then compared with the prediction of the CBR and an average deviation is calculated in the strain domain. For centre-based models, we show that the CBR holds exactly when the deformation gradient is relatively small and the reference stress-free configuration is defined by a honeycomb lattice. We show further that the CBR may be used approximately when the reference state is perturbed from the honeycomb configuration. By contrast, for vertex-based models, a similar analysis reveals that the CBR does not provide a good representation of the tissue mechanics, even when the reference configuration is defined by a honeycomb lattice. The paper concludes with a discussion of the implications of these results for concurrent discrete/continuous modelling, adaptation of atom-to-continuum (AtC) techniques to biological tissues and model classification

    Case Based Reasoning and TRIZ : a coupling for Innovative conception in Chemical Engineering

    Get PDF
    With the evolutions of the surrounding world market, researchers and engineers have to propose technical innovations. Nevertheless, Chemical Engineering community demonstrates a small interest for innovation compared to other engineering fields. In this paper, an approach to accelerate inventive preliminary design for Chemical Engineering is presented. This approach uses Case Based Reasoning (CBR) method to model, to capture, to store and to make available the knowledge deployed during design. CBR is a very interesting method coming from Artificial Intelligence, for routine design. Indeed, in CBR the main assumption is that a new problem of design can be solved with the help of past successful ones. Consequently, the problem solving process is based on past successful solutions therefore the design is accelerated but creativity is limited and not stimulated. Our approach is an extension of the CBR method from routine design to inventive design. One of the main drawbacks of this method is that it is restricted in one particular domain of application. To propose inventive solution, the level of abstraction for problem resolution must be increased. For this reason CBR is coupled with the TRIZ theory (Russian acronym for Theory of solving inventive problem). TRIZ is a problem solving method that increases the ability to solve creative problems thanks to its capacity to give access to the best practices in all the technical domains. The proposed synergy between CBR and TRIZ combines the main advantages of CBR (ability to store and to reuse rapidly knowledge) and those of TRIZ (no trade off during resolution, inventive solutions). Based on this synergy, a tool is developed and a mere example is treated
    corecore